Journal of Global Optimization Best Paper Award for 2015
In this paper we analyze several new methods for solving nonconvex optimization problems with the objective function consisting of a sum of two terms: one is nonconvex and smooth, and another is convex but simple and its structure is known. Further, we consider both cases: unconstrained and linearly...
Gespeichert in:
Veröffentlicht in: | Journal of global optimization 2016-12, Vol.66 (4), p.595-596 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 596 |
---|---|
container_issue | 4 |
container_start_page | 595 |
container_title | Journal of global optimization |
container_volume | 66 |
creator | Butenko, Sergiy |
description | In this paper we analyze several new methods for solving nonconvex optimization problems with the objective function consisting of a sum of two terms: one is nonconvex and smooth, and another is convex but simple and its structure is known. Further, we consider both cases: unconstrained and linearly constrained nonconvex problems. For optimization problems of the above structure, we propose random coordinate descent algorithms and analyze their convergence properties. For the general case, when the objective function is nonconvex and composite we prove asymptotic convergence for the sequences generated by our algorithms to stationary points and sublinear rate of convergence in expectation for some optimality measure. Additionally, if the objective function satises an error bound condition we derive a local linear rate of convergence for the expected values of the objective function. We also present extensive numerical experiments for evaluating the performance of our algorithms in comparison with state-of-the-art methods. |
doi_str_mv | 10.1007/s10898-016-0479-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1836147811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718413620</galeid><sourcerecordid>A718413620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-87325e532866bfad29678db1e3a4fd99875306368c9dec9cf58356638449b3b3</originalsourceid><addsrcrecordid>eNp1kEFLwzAUx4MoOKcfwFvBc-d7SZMmxzl0KoN52D2kbTI6uqYmHaKf3kg9eJEcXnj8f48_P0JuERYIUN5HBKlkDihyKEqVF2dkhrxkOVUozskMFOU5B8BLchXjAQCU5HRG5Ks_hd50mXfZuvNV-m2HsT22X2ZsfZ892Dhmb2awIVt-mNBkzoeMAvJrcuFMF-3N75yT3dPjbvWcb7brl9Vyk9eMw5jLklFuOaNSiMqZhipRyqZCy0zhGqVkyRkIJmStGlur2nHJuBBMFoWqWMXm5G46OwT_fkpl9GEqHDVKJrAoJWJKLabU3nRWt73zYzB1eo09trXvrWvTflmiLJAJCgnACaiDjzFYp4fQHk341Aj6R6iehOokVP8I1UVi6MTElO33Nvyp8i_0DcBQdMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1836147811</pqid></control><display><type>article</type><title>Journal of Global Optimization Best Paper Award for 2015</title><source>SpringerLink Journals - AutoHoldings</source><creator>Butenko, Sergiy</creator><creatorcontrib>Butenko, Sergiy</creatorcontrib><description>In this paper we analyze several new methods for solving nonconvex optimization problems with the objective function consisting of a sum of two terms: one is nonconvex and smooth, and another is convex but simple and its structure is known. Further, we consider both cases: unconstrained and linearly constrained nonconvex problems. For optimization problems of the above structure, we propose random coordinate descent algorithms and analyze their convergence properties. For the general case, when the objective function is nonconvex and composite we prove asymptotic convergence for the sequences generated by our algorithms to stationary points and sublinear rate of convergence in expectation for some optimality measure. Additionally, if the objective function satises an error bound condition we derive a local linear rate of convergence for the expected values of the objective function. We also present extensive numerical experiments for evaluating the performance of our algorithms in comparison with state-of-the-art methods.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-016-0479-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Awards & honors ; Committees ; Computer Science ; Convex analysis ; Editorial ; Editorials ; Mathematics ; Mathematics and Statistics ; Nominations ; Operations Research/Decision Theory ; Optimization ; Optimization algorithms ; Real Functions</subject><ispartof>Journal of global optimization, 2016-12, Vol.66 (4), p.595-596</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2016 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c350t-87325e532866bfad29678db1e3a4fd99875306368c9dec9cf58356638449b3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10898-016-0479-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10898-016-0479-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Butenko, Sergiy</creatorcontrib><title>Journal of Global Optimization Best Paper Award for 2015</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>In this paper we analyze several new methods for solving nonconvex optimization problems with the objective function consisting of a sum of two terms: one is nonconvex and smooth, and another is convex but simple and its structure is known. Further, we consider both cases: unconstrained and linearly constrained nonconvex problems. For optimization problems of the above structure, we propose random coordinate descent algorithms and analyze their convergence properties. For the general case, when the objective function is nonconvex and composite we prove asymptotic convergence for the sequences generated by our algorithms to stationary points and sublinear rate of convergence in expectation for some optimality measure. Additionally, if the objective function satises an error bound condition we derive a local linear rate of convergence for the expected values of the objective function. We also present extensive numerical experiments for evaluating the performance of our algorithms in comparison with state-of-the-art methods.</description><subject>Algorithms</subject><subject>Awards & honors</subject><subject>Committees</subject><subject>Computer Science</subject><subject>Convex analysis</subject><subject>Editorial</subject><subject>Editorials</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nominations</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Real Functions</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEFLwzAUx4MoOKcfwFvBc-d7SZMmxzl0KoN52D2kbTI6uqYmHaKf3kg9eJEcXnj8f48_P0JuERYIUN5HBKlkDihyKEqVF2dkhrxkOVUozskMFOU5B8BLchXjAQCU5HRG5Ks_hd50mXfZuvNV-m2HsT22X2ZsfZ892Dhmb2awIVt-mNBkzoeMAvJrcuFMF-3N75yT3dPjbvWcb7brl9Vyk9eMw5jLklFuOaNSiMqZhipRyqZCy0zhGqVkyRkIJmStGlur2nHJuBBMFoWqWMXm5G46OwT_fkpl9GEqHDVKJrAoJWJKLabU3nRWt73zYzB1eo09trXvrWvTflmiLJAJCgnACaiDjzFYp4fQHk341Aj6R6iehOokVP8I1UVi6MTElO33Nvyp8i_0DcBQdMQ</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Butenko, Sergiy</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20161201</creationdate><title>Journal of Global Optimization Best Paper Award for 2015</title><author>Butenko, Sergiy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-87325e532866bfad29678db1e3a4fd99875306368c9dec9cf58356638449b3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Awards & honors</topic><topic>Committees</topic><topic>Computer Science</topic><topic>Convex analysis</topic><topic>Editorial</topic><topic>Editorials</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nominations</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Real Functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Butenko, Sergiy</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Butenko, Sergiy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Journal of Global Optimization Best Paper Award for 2015</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>66</volume><issue>4</issue><spage>595</spage><epage>596</epage><pages>595-596</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>In this paper we analyze several new methods for solving nonconvex optimization problems with the objective function consisting of a sum of two terms: one is nonconvex and smooth, and another is convex but simple and its structure is known. Further, we consider both cases: unconstrained and linearly constrained nonconvex problems. For optimization problems of the above structure, we propose random coordinate descent algorithms and analyze their convergence properties. For the general case, when the objective function is nonconvex and composite we prove asymptotic convergence for the sequences generated by our algorithms to stationary points and sublinear rate of convergence in expectation for some optimality measure. Additionally, if the objective function satises an error bound condition we derive a local linear rate of convergence for the expected values of the objective function. We also present extensive numerical experiments for evaluating the performance of our algorithms in comparison with state-of-the-art methods.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10898-016-0479-4</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-5001 |
ispartof | Journal of global optimization, 2016-12, Vol.66 (4), p.595-596 |
issn | 0925-5001 1573-2916 |
language | eng |
recordid | cdi_proquest_journals_1836147811 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Awards & honors Committees Computer Science Convex analysis Editorial Editorials Mathematics Mathematics and Statistics Nominations Operations Research/Decision Theory Optimization Optimization algorithms Real Functions |
title | Journal of Global Optimization Best Paper Award for 2015 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A47%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Journal%20of%20Global%20Optimization%20Best%20Paper%20Award%20for%202015&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Butenko,%20Sergiy&rft.date=2016-12-01&rft.volume=66&rft.issue=4&rft.spage=595&rft.epage=596&rft.pages=595-596&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-016-0479-4&rft_dat=%3Cgale_proqu%3EA718413620%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1836147811&rft_id=info:pmid/&rft_galeid=A718413620&rfr_iscdi=true |