Alternative Generation Sources Portfolio: Optimal Resources Allocation and Risk Analysis Supported by Genetics Algorithms
The natural resources characteristics and current economic factors encourage investments in alternative sources of electric power generation in Brazil. Different technologies can compose a portfolio of generating plants with energetic synergism as a function of the seasonal diversity of their potent...
Gespeichert in:
Veröffentlicht in: | Revista IEEE América Latina 2016-07, Vol.14 (7), p.3232-3241 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3241 |
---|---|
container_issue | 7 |
container_start_page | 3232 |
container_title | Revista IEEE América Latina |
container_volume | 14 |
creator | Steinle Camargo, Luiz Armando Soares Ramos, Dorel Guarnier, Ewerton Ishida, Sergio Matsudo, Eduardo |
description | The natural resources characteristics and current economic factors encourage investments in alternative sources of electric power generation in Brazil. Different technologies can compose a portfolio of generating plants with energetic synergism as a function of the seasonal diversity of their potential production. In such portfolios, it is sought to obtain financial gains by virtue of complementarity generation among candidates sources, under investor's pre-established risk control criteria. From this perspective, our study aims to present an optimization model - supported by genetic algorithms - to define the optimal financial resources allocation for composing renewable sources portfolio (wind, small hydro and biomass cogeneration), given a specified budget and risk-aversion criteria measured by means of the Conditional Value-at-Risk. Case studies involving the cited sources illustrate the application of the model and its potential for supporting analysis and decision making. |
doi_str_mv | 10.1109/TLA.2016.7587625 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1831037443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7587625</ieee_id><sourcerecordid>4224102301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1363-85179a38962309281d0a0c3840ae50b62736f3945b408f40c237a8ebc522569b3</originalsourceid><addsrcrecordid>eNpNUM1LwzAcDaLgnN4FLwHPnflo2sRbGTqFwWSb55BmqWZ2TU06of-9mZ3i6ffgffB-D4BrjCYYI3G3nhcTgnA2yRnPM8JOwAizlCdICHL6D5-DixC2CFGecToCfVF3xjeqs18GzkxjfISugSu399oE-OJ8V7naunu4aDu7UzVcmnAki7p2etCrZgOXNnzAolF1H2yAq33bRrPZwLL_Se6sPljenLfd-y5cgrNK1cFcHe8YvD4-rKdPyXwxe54W80RjmtGEM5wLRbnICEWCcLxBCmnKU6QMQ2VGcppVVKSsTBGvUqQJzRU3pWaEsEyUdAxuh9zWu8-9CZ3cxvqxZZCYU4xonqY0qtCg0t6F4E0lWx-_9b3ESB4GlnFgeRhYHgeOlpvBYo0xf_Jf9htLd3cW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1831037443</pqid></control><display><type>article</type><title>Alternative Generation Sources Portfolio: Optimal Resources Allocation and Risk Analysis Supported by Genetics Algorithms</title><source>IEEE Electronic Library (IEL)</source><creator>Steinle Camargo, Luiz Armando ; Soares Ramos, Dorel ; Guarnier, Ewerton ; Ishida, Sergio ; Matsudo, Eduardo</creator><creatorcontrib>Steinle Camargo, Luiz Armando ; Soares Ramos, Dorel ; Guarnier, Ewerton ; Ishida, Sergio ; Matsudo, Eduardo</creatorcontrib><description>The natural resources characteristics and current economic factors encourage investments in alternative sources of electric power generation in Brazil. Different technologies can compose a portfolio of generating plants with energetic synergism as a function of the seasonal diversity of their potential production. In such portfolios, it is sought to obtain financial gains by virtue of complementarity generation among candidates sources, under investor's pre-established risk control criteria. From this perspective, our study aims to present an optimization model - supported by genetic algorithms - to define the optimal financial resources allocation for composing renewable sources portfolio (wind, small hydro and biomass cogeneration), given a specified budget and risk-aversion criteria measured by means of the Conditional Value-at-Risk. Case studies involving the cited sources illustrate the application of the model and its potential for supporting analysis and decision making.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2016.7587625</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Alternatives Sources ; Biological system modeling ; Computational modeling ; Genetic algorithms ; Investment ; Investment Analysis ; Market Risks ; Portfolio Composition ; Portfolios ; Resource management ; Risk analysis</subject><ispartof>Revista IEEE América Latina, 2016-07, Vol.14 (7), p.3232-3241</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1363-85179a38962309281d0a0c3840ae50b62736f3945b408f40c237a8ebc522569b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7587625$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7587625$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Steinle Camargo, Luiz Armando</creatorcontrib><creatorcontrib>Soares Ramos, Dorel</creatorcontrib><creatorcontrib>Guarnier, Ewerton</creatorcontrib><creatorcontrib>Ishida, Sergio</creatorcontrib><creatorcontrib>Matsudo, Eduardo</creatorcontrib><title>Alternative Generation Sources Portfolio: Optimal Resources Allocation and Risk Analysis Supported by Genetics Algorithms</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>The natural resources characteristics and current economic factors encourage investments in alternative sources of electric power generation in Brazil. Different technologies can compose a portfolio of generating plants with energetic synergism as a function of the seasonal diversity of their potential production. In such portfolios, it is sought to obtain financial gains by virtue of complementarity generation among candidates sources, under investor's pre-established risk control criteria. From this perspective, our study aims to present an optimization model - supported by genetic algorithms - to define the optimal financial resources allocation for composing renewable sources portfolio (wind, small hydro and biomass cogeneration), given a specified budget and risk-aversion criteria measured by means of the Conditional Value-at-Risk. Case studies involving the cited sources illustrate the application of the model and its potential for supporting analysis and decision making.</description><subject>Alternatives Sources</subject><subject>Biological system modeling</subject><subject>Computational modeling</subject><subject>Genetic algorithms</subject><subject>Investment</subject><subject>Investment Analysis</subject><subject>Market Risks</subject><subject>Portfolio Composition</subject><subject>Portfolios</subject><subject>Resource management</subject><subject>Risk analysis</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUM1LwzAcDaLgnN4FLwHPnflo2sRbGTqFwWSb55BmqWZ2TU06of-9mZ3i6ffgffB-D4BrjCYYI3G3nhcTgnA2yRnPM8JOwAizlCdICHL6D5-DixC2CFGecToCfVF3xjeqs18GzkxjfISugSu399oE-OJ8V7naunu4aDu7UzVcmnAki7p2etCrZgOXNnzAolF1H2yAq33bRrPZwLL_Se6sPljenLfd-y5cgrNK1cFcHe8YvD4-rKdPyXwxe54W80RjmtGEM5wLRbnICEWCcLxBCmnKU6QMQ2VGcppVVKSsTBGvUqQJzRU3pWaEsEyUdAxuh9zWu8-9CZ3cxvqxZZCYU4xonqY0qtCg0t6F4E0lWx-_9b3ESB4GlnFgeRhYHgeOlpvBYo0xf_Jf9htLd3cW</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Steinle Camargo, Luiz Armando</creator><creator>Soares Ramos, Dorel</creator><creator>Guarnier, Ewerton</creator><creator>Ishida, Sergio</creator><creator>Matsudo, Eduardo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201607</creationdate><title>Alternative Generation Sources Portfolio: Optimal Resources Allocation and Risk Analysis Supported by Genetics Algorithms</title><author>Steinle Camargo, Luiz Armando ; Soares Ramos, Dorel ; Guarnier, Ewerton ; Ishida, Sergio ; Matsudo, Eduardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1363-85179a38962309281d0a0c3840ae50b62736f3945b408f40c237a8ebc522569b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alternatives Sources</topic><topic>Biological system modeling</topic><topic>Computational modeling</topic><topic>Genetic algorithms</topic><topic>Investment</topic><topic>Investment Analysis</topic><topic>Market Risks</topic><topic>Portfolio Composition</topic><topic>Portfolios</topic><topic>Resource management</topic><topic>Risk analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Steinle Camargo, Luiz Armando</creatorcontrib><creatorcontrib>Soares Ramos, Dorel</creatorcontrib><creatorcontrib>Guarnier, Ewerton</creatorcontrib><creatorcontrib>Ishida, Sergio</creatorcontrib><creatorcontrib>Matsudo, Eduardo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Steinle Camargo, Luiz Armando</au><au>Soares Ramos, Dorel</au><au>Guarnier, Ewerton</au><au>Ishida, Sergio</au><au>Matsudo, Eduardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alternative Generation Sources Portfolio: Optimal Resources Allocation and Risk Analysis Supported by Genetics Algorithms</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2016-07</date><risdate>2016</risdate><volume>14</volume><issue>7</issue><spage>3232</spage><epage>3241</epage><pages>3232-3241</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>The natural resources characteristics and current economic factors encourage investments in alternative sources of electric power generation in Brazil. Different technologies can compose a portfolio of generating plants with energetic synergism as a function of the seasonal diversity of their potential production. In such portfolios, it is sought to obtain financial gains by virtue of complementarity generation among candidates sources, under investor's pre-established risk control criteria. From this perspective, our study aims to present an optimization model - supported by genetic algorithms - to define the optimal financial resources allocation for composing renewable sources portfolio (wind, small hydro and biomass cogeneration), given a specified budget and risk-aversion criteria measured by means of the Conditional Value-at-Risk. Case studies involving the cited sources illustrate the application of the model and its potential for supporting analysis and decision making.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2016.7587625</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1548-0992 |
ispartof | Revista IEEE América Latina, 2016-07, Vol.14 (7), p.3232-3241 |
issn | 1548-0992 1548-0992 |
language | eng |
recordid | cdi_proquest_journals_1831037443 |
source | IEEE Electronic Library (IEL) |
subjects | Alternatives Sources Biological system modeling Computational modeling Genetic algorithms Investment Investment Analysis Market Risks Portfolio Composition Portfolios Resource management Risk analysis |
title | Alternative Generation Sources Portfolio: Optimal Resources Allocation and Risk Analysis Supported by Genetics Algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T23%3A45%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alternative%20Generation%20Sources%20Portfolio:%20Optimal%20Resources%20Allocation%20and%20Risk%20Analysis%20Supported%20by%20Genetics%20Algorithms&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Steinle%20Camargo,%20Luiz%20Armando&rft.date=2016-07&rft.volume=14&rft.issue=7&rft.spage=3232&rft.epage=3241&rft.pages=3232-3241&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2016.7587625&rft_dat=%3Cproquest_RIE%3E4224102301%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1831037443&rft_id=info:pmid/&rft_ieee_id=7587625&rfr_iscdi=true |