Alternative Generation Sources Portfolio: Optimal Resources Allocation and Risk Analysis Supported by Genetics Algorithms

The natural resources characteristics and current economic factors encourage investments in alternative sources of electric power generation in Brazil. Different technologies can compose a portfolio of generating plants with energetic synergism as a function of the seasonal diversity of their potent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista IEEE América Latina 2016-07, Vol.14 (7), p.3232-3241
Hauptverfasser: Steinle Camargo, Luiz Armando, Soares Ramos, Dorel, Guarnier, Ewerton, Ishida, Sergio, Matsudo, Eduardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3241
container_issue 7
container_start_page 3232
container_title Revista IEEE América Latina
container_volume 14
creator Steinle Camargo, Luiz Armando
Soares Ramos, Dorel
Guarnier, Ewerton
Ishida, Sergio
Matsudo, Eduardo
description The natural resources characteristics and current economic factors encourage investments in alternative sources of electric power generation in Brazil. Different technologies can compose a portfolio of generating plants with energetic synergism as a function of the seasonal diversity of their potential production. In such portfolios, it is sought to obtain financial gains by virtue of complementarity generation among candidates sources, under investor's pre-established risk control criteria. From this perspective, our study aims to present an optimization model - supported by genetic algorithms - to define the optimal financial resources allocation for composing renewable sources portfolio (wind, small hydro and biomass cogeneration), given a specified budget and risk-aversion criteria measured by means of the Conditional Value-at-Risk. Case studies involving the cited sources illustrate the application of the model and its potential for supporting analysis and decision making.
doi_str_mv 10.1109/TLA.2016.7587625
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1831037443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7587625</ieee_id><sourcerecordid>4224102301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1363-85179a38962309281d0a0c3840ae50b62736f3945b408f40c237a8ebc522569b3</originalsourceid><addsrcrecordid>eNpNUM1LwzAcDaLgnN4FLwHPnflo2sRbGTqFwWSb55BmqWZ2TU06of-9mZ3i6ffgffB-D4BrjCYYI3G3nhcTgnA2yRnPM8JOwAizlCdICHL6D5-DixC2CFGecToCfVF3xjeqs18GzkxjfISugSu399oE-OJ8V7naunu4aDu7UzVcmnAki7p2etCrZgOXNnzAolF1H2yAq33bRrPZwLL_Se6sPljenLfd-y5cgrNK1cFcHe8YvD4-rKdPyXwxe54W80RjmtGEM5wLRbnICEWCcLxBCmnKU6QMQ2VGcppVVKSsTBGvUqQJzRU3pWaEsEyUdAxuh9zWu8-9CZ3cxvqxZZCYU4xonqY0qtCg0t6F4E0lWx-_9b3ESB4GlnFgeRhYHgeOlpvBYo0xf_Jf9htLd3cW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1831037443</pqid></control><display><type>article</type><title>Alternative Generation Sources Portfolio: Optimal Resources Allocation and Risk Analysis Supported by Genetics Algorithms</title><source>IEEE Electronic Library (IEL)</source><creator>Steinle Camargo, Luiz Armando ; Soares Ramos, Dorel ; Guarnier, Ewerton ; Ishida, Sergio ; Matsudo, Eduardo</creator><creatorcontrib>Steinle Camargo, Luiz Armando ; Soares Ramos, Dorel ; Guarnier, Ewerton ; Ishida, Sergio ; Matsudo, Eduardo</creatorcontrib><description>The natural resources characteristics and current economic factors encourage investments in alternative sources of electric power generation in Brazil. Different technologies can compose a portfolio of generating plants with energetic synergism as a function of the seasonal diversity of their potential production. In such portfolios, it is sought to obtain financial gains by virtue of complementarity generation among candidates sources, under investor's pre-established risk control criteria. From this perspective, our study aims to present an optimization model - supported by genetic algorithms - to define the optimal financial resources allocation for composing renewable sources portfolio (wind, small hydro and biomass cogeneration), given a specified budget and risk-aversion criteria measured by means of the Conditional Value-at-Risk. Case studies involving the cited sources illustrate the application of the model and its potential for supporting analysis and decision making.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2016.7587625</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Alternatives Sources ; Biological system modeling ; Computational modeling ; Genetic algorithms ; Investment ; Investment Analysis ; Market Risks ; Portfolio Composition ; Portfolios ; Resource management ; Risk analysis</subject><ispartof>Revista IEEE América Latina, 2016-07, Vol.14 (7), p.3232-3241</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1363-85179a38962309281d0a0c3840ae50b62736f3945b408f40c237a8ebc522569b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7587625$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7587625$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Steinle Camargo, Luiz Armando</creatorcontrib><creatorcontrib>Soares Ramos, Dorel</creatorcontrib><creatorcontrib>Guarnier, Ewerton</creatorcontrib><creatorcontrib>Ishida, Sergio</creatorcontrib><creatorcontrib>Matsudo, Eduardo</creatorcontrib><title>Alternative Generation Sources Portfolio: Optimal Resources Allocation and Risk Analysis Supported by Genetics Algorithms</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>The natural resources characteristics and current economic factors encourage investments in alternative sources of electric power generation in Brazil. Different technologies can compose a portfolio of generating plants with energetic synergism as a function of the seasonal diversity of their potential production. In such portfolios, it is sought to obtain financial gains by virtue of complementarity generation among candidates sources, under investor's pre-established risk control criteria. From this perspective, our study aims to present an optimization model - supported by genetic algorithms - to define the optimal financial resources allocation for composing renewable sources portfolio (wind, small hydro and biomass cogeneration), given a specified budget and risk-aversion criteria measured by means of the Conditional Value-at-Risk. Case studies involving the cited sources illustrate the application of the model and its potential for supporting analysis and decision making.</description><subject>Alternatives Sources</subject><subject>Biological system modeling</subject><subject>Computational modeling</subject><subject>Genetic algorithms</subject><subject>Investment</subject><subject>Investment Analysis</subject><subject>Market Risks</subject><subject>Portfolio Composition</subject><subject>Portfolios</subject><subject>Resource management</subject><subject>Risk analysis</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUM1LwzAcDaLgnN4FLwHPnflo2sRbGTqFwWSb55BmqWZ2TU06of-9mZ3i6ffgffB-D4BrjCYYI3G3nhcTgnA2yRnPM8JOwAizlCdICHL6D5-DixC2CFGecToCfVF3xjeqs18GzkxjfISugSu399oE-OJ8V7naunu4aDu7UzVcmnAki7p2etCrZgOXNnzAolF1H2yAq33bRrPZwLL_Se6sPljenLfd-y5cgrNK1cFcHe8YvD4-rKdPyXwxe54W80RjmtGEM5wLRbnICEWCcLxBCmnKU6QMQ2VGcppVVKSsTBGvUqQJzRU3pWaEsEyUdAxuh9zWu8-9CZ3cxvqxZZCYU4xonqY0qtCg0t6F4E0lWx-_9b3ESB4GlnFgeRhYHgeOlpvBYo0xf_Jf9htLd3cW</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Steinle Camargo, Luiz Armando</creator><creator>Soares Ramos, Dorel</creator><creator>Guarnier, Ewerton</creator><creator>Ishida, Sergio</creator><creator>Matsudo, Eduardo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201607</creationdate><title>Alternative Generation Sources Portfolio: Optimal Resources Allocation and Risk Analysis Supported by Genetics Algorithms</title><author>Steinle Camargo, Luiz Armando ; Soares Ramos, Dorel ; Guarnier, Ewerton ; Ishida, Sergio ; Matsudo, Eduardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1363-85179a38962309281d0a0c3840ae50b62736f3945b408f40c237a8ebc522569b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alternatives Sources</topic><topic>Biological system modeling</topic><topic>Computational modeling</topic><topic>Genetic algorithms</topic><topic>Investment</topic><topic>Investment Analysis</topic><topic>Market Risks</topic><topic>Portfolio Composition</topic><topic>Portfolios</topic><topic>Resource management</topic><topic>Risk analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Steinle Camargo, Luiz Armando</creatorcontrib><creatorcontrib>Soares Ramos, Dorel</creatorcontrib><creatorcontrib>Guarnier, Ewerton</creatorcontrib><creatorcontrib>Ishida, Sergio</creatorcontrib><creatorcontrib>Matsudo, Eduardo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Steinle Camargo, Luiz Armando</au><au>Soares Ramos, Dorel</au><au>Guarnier, Ewerton</au><au>Ishida, Sergio</au><au>Matsudo, Eduardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alternative Generation Sources Portfolio: Optimal Resources Allocation and Risk Analysis Supported by Genetics Algorithms</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2016-07</date><risdate>2016</risdate><volume>14</volume><issue>7</issue><spage>3232</spage><epage>3241</epage><pages>3232-3241</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>The natural resources characteristics and current economic factors encourage investments in alternative sources of electric power generation in Brazil. Different technologies can compose a portfolio of generating plants with energetic synergism as a function of the seasonal diversity of their potential production. In such portfolios, it is sought to obtain financial gains by virtue of complementarity generation among candidates sources, under investor's pre-established risk control criteria. From this perspective, our study aims to present an optimization model - supported by genetic algorithms - to define the optimal financial resources allocation for composing renewable sources portfolio (wind, small hydro and biomass cogeneration), given a specified budget and risk-aversion criteria measured by means of the Conditional Value-at-Risk. Case studies involving the cited sources illustrate the application of the model and its potential for supporting analysis and decision making.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2016.7587625</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1548-0992
ispartof Revista IEEE América Latina, 2016-07, Vol.14 (7), p.3232-3241
issn 1548-0992
1548-0992
language eng
recordid cdi_proquest_journals_1831037443
source IEEE Electronic Library (IEL)
subjects Alternatives Sources
Biological system modeling
Computational modeling
Genetic algorithms
Investment
Investment Analysis
Market Risks
Portfolio Composition
Portfolios
Resource management
Risk analysis
title Alternative Generation Sources Portfolio: Optimal Resources Allocation and Risk Analysis Supported by Genetics Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T23%3A45%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alternative%20Generation%20Sources%20Portfolio:%20Optimal%20Resources%20Allocation%20and%20Risk%20Analysis%20Supported%20by%20Genetics%20Algorithms&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Steinle%20Camargo,%20Luiz%20Armando&rft.date=2016-07&rft.volume=14&rft.issue=7&rft.spage=3232&rft.epage=3241&rft.pages=3232-3241&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2016.7587625&rft_dat=%3Cproquest_RIE%3E4224102301%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1831037443&rft_id=info:pmid/&rft_ieee_id=7587625&rfr_iscdi=true