QoS-Aware Multigranularity Service Composition: Modeling and Optimization
Quality of service (QoS)-aware optimal service composition aims to maximize the overall QoS value of the resulting composite service instance while meeting user-specified global QoS constraints. Traditional methods only consider as candidates service instances that implement one abstract service in...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2016-11, Vol.46 (11), p.1565-1577 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1577 |
---|---|
container_issue | 11 |
container_start_page | 1565 |
container_title | IEEE transactions on systems, man, and cybernetics. Systems |
container_volume | 46 |
creator | Quanwang Wu Ishikawa, Fuyuki Qingsheng Zhu Dong-Hoon Shin |
description | Quality of service (QoS)-aware optimal service composition aims to maximize the overall QoS value of the resulting composite service instance while meeting user-specified global QoS constraints. Traditional methods only consider as candidates service instances that implement one abstract service in the composite service and neglect those that could perform multiple abstract services. To overcome this shortcoming, this paper proposes the concept of generalized component services (GCSs), which is defined in a semantic manner, to expand the selection scope so as to achieve a better solution. A QoS-aware multigranularity service composition model is formulated and how to identify all the GCSs for a composite service is elaborated. A backtracking-based algorithm and an extended genetic algorithm are proposed to optimize the resulting composite service instance. Lastly, evaluation results of these algorithms are described. |
doi_str_mv | 10.1109/TSMC.2015.2503384 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1831037423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7401117</ieee_id><sourcerecordid>4224100981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-d4dccd723f4c0493d7ecc07d35d85a495094dbf3ed66d49851d6b32e093647d3</originalsourceid><addsrcrecordid>eNo9kF1rwjAUhsPYYOL8AWM3hV3XnZOkabs7KfsQFBl6H2KSSqQ2XVo33K9fi-LVeeE87znwEPKIMEWE_GWzXhZTCphMaQKMZfyGjCiKLKaU0dtrRnFPJm27BwCkmWAgRmT-5dfx7FcFGy2PVed2QdXHSgXXnaK1DT9O26jwh8a3rnO-fo2W3tjK1btI1SZaNZ07uD81rB7IXamq1k4uc0w272-b4jNerD7mxWwRa5qzLjbcaG1SykqugefMpFZrSA1LTJYonieQc7MtmTVCGJ5nCRqxZdRCzgTvsTF5Pp9tgv8-2raTe38Mdf9RYsYQWMop6yk8Uzr4tg22lE1wBxVOEkEOzuTgTA7O5MVZ33k6d5y19sqnHBAxZf-ua2eZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1831037423</pqid></control><display><type>article</type><title>QoS-Aware Multigranularity Service Composition: Modeling and Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Quanwang Wu ; Ishikawa, Fuyuki ; Qingsheng Zhu ; Dong-Hoon Shin</creator><creatorcontrib>Quanwang Wu ; Ishikawa, Fuyuki ; Qingsheng Zhu ; Dong-Hoon Shin</creatorcontrib><description>Quality of service (QoS)-aware optimal service composition aims to maximize the overall QoS value of the resulting composite service instance while meeting user-specified global QoS constraints. Traditional methods only consider as candidates service instances that implement one abstract service in the composite service and neglect those that could perform multiple abstract services. To overcome this shortcoming, this paper proposes the concept of generalized component services (GCSs), which is defined in a semantic manner, to expand the selection scope so as to achieve a better solution. A QoS-aware multigranularity service composition model is formulated and how to identify all the GCSs for a composite service is elaborated. A backtracking-based algorithm and an extended genetic algorithm are proposed to optimize the resulting composite service instance. Lastly, evaluation results of these algorithms are described.</description><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMC.2015.2503384</identifier><identifier>CODEN: ITSMFE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cities and towns ; Generalized component service (GCS) ; Genetic algorithms ; granularity ; Optimization ; Quality of service ; quality of service (QoS) ; Semantics ; service composition ; Weather forecasting</subject><ispartof>IEEE transactions on systems, man, and cybernetics. Systems, 2016-11, Vol.46 (11), p.1565-1577</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-d4dccd723f4c0493d7ecc07d35d85a495094dbf3ed66d49851d6b32e093647d3</citedby><cites>FETCH-LOGICAL-c293t-d4dccd723f4c0493d7ecc07d35d85a495094dbf3ed66d49851d6b32e093647d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7401117$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7401117$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Quanwang Wu</creatorcontrib><creatorcontrib>Ishikawa, Fuyuki</creatorcontrib><creatorcontrib>Qingsheng Zhu</creatorcontrib><creatorcontrib>Dong-Hoon Shin</creatorcontrib><title>QoS-Aware Multigranularity Service Composition: Modeling and Optimization</title><title>IEEE transactions on systems, man, and cybernetics. Systems</title><addtitle>TSMC</addtitle><description>Quality of service (QoS)-aware optimal service composition aims to maximize the overall QoS value of the resulting composite service instance while meeting user-specified global QoS constraints. Traditional methods only consider as candidates service instances that implement one abstract service in the composite service and neglect those that could perform multiple abstract services. To overcome this shortcoming, this paper proposes the concept of generalized component services (GCSs), which is defined in a semantic manner, to expand the selection scope so as to achieve a better solution. A QoS-aware multigranularity service composition model is formulated and how to identify all the GCSs for a composite service is elaborated. A backtracking-based algorithm and an extended genetic algorithm are proposed to optimize the resulting composite service instance. Lastly, evaluation results of these algorithms are described.</description><subject>Cities and towns</subject><subject>Generalized component service (GCS)</subject><subject>Genetic algorithms</subject><subject>granularity</subject><subject>Optimization</subject><subject>Quality of service</subject><subject>quality of service (QoS)</subject><subject>Semantics</subject><subject>service composition</subject><subject>Weather forecasting</subject><issn>2168-2216</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1rwjAUhsPYYOL8AWM3hV3XnZOkabs7KfsQFBl6H2KSSqQ2XVo33K9fi-LVeeE87znwEPKIMEWE_GWzXhZTCphMaQKMZfyGjCiKLKaU0dtrRnFPJm27BwCkmWAgRmT-5dfx7FcFGy2PVed2QdXHSgXXnaK1DT9O26jwh8a3rnO-fo2W3tjK1btI1SZaNZ07uD81rB7IXamq1k4uc0w272-b4jNerD7mxWwRa5qzLjbcaG1SykqugefMpFZrSA1LTJYonieQc7MtmTVCGJ5nCRqxZdRCzgTvsTF5Pp9tgv8-2raTe38Mdf9RYsYQWMop6yk8Uzr4tg22lE1wBxVOEkEOzuTgTA7O5MVZ33k6d5y19sqnHBAxZf-ua2eZ</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Quanwang Wu</creator><creator>Ishikawa, Fuyuki</creator><creator>Qingsheng Zhu</creator><creator>Dong-Hoon Shin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201611</creationdate><title>QoS-Aware Multigranularity Service Composition: Modeling and Optimization</title><author>Quanwang Wu ; Ishikawa, Fuyuki ; Qingsheng Zhu ; Dong-Hoon Shin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-d4dccd723f4c0493d7ecc07d35d85a495094dbf3ed66d49851d6b32e093647d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cities and towns</topic><topic>Generalized component service (GCS)</topic><topic>Genetic algorithms</topic><topic>granularity</topic><topic>Optimization</topic><topic>Quality of service</topic><topic>quality of service (QoS)</topic><topic>Semantics</topic><topic>service composition</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quanwang Wu</creatorcontrib><creatorcontrib>Ishikawa, Fuyuki</creatorcontrib><creatorcontrib>Qingsheng Zhu</creatorcontrib><creatorcontrib>Dong-Hoon Shin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Quanwang Wu</au><au>Ishikawa, Fuyuki</au><au>Qingsheng Zhu</au><au>Dong-Hoon Shin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QoS-Aware Multigranularity Service Composition: Modeling and Optimization</atitle><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle><stitle>TSMC</stitle><date>2016-11</date><risdate>2016</risdate><volume>46</volume><issue>11</issue><spage>1565</spage><epage>1577</epage><pages>1565-1577</pages><issn>2168-2216</issn><eissn>2168-2232</eissn><coden>ITSMFE</coden><abstract>Quality of service (QoS)-aware optimal service composition aims to maximize the overall QoS value of the resulting composite service instance while meeting user-specified global QoS constraints. Traditional methods only consider as candidates service instances that implement one abstract service in the composite service and neglect those that could perform multiple abstract services. To overcome this shortcoming, this paper proposes the concept of generalized component services (GCSs), which is defined in a semantic manner, to expand the selection scope so as to achieve a better solution. A QoS-aware multigranularity service composition model is formulated and how to identify all the GCSs for a composite service is elaborated. A backtracking-based algorithm and an extended genetic algorithm are proposed to optimize the resulting composite service instance. Lastly, evaluation results of these algorithms are described.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMC.2015.2503384</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2216 |
ispartof | IEEE transactions on systems, man, and cybernetics. Systems, 2016-11, Vol.46 (11), p.1565-1577 |
issn | 2168-2216 2168-2232 |
language | eng |
recordid | cdi_proquest_journals_1831037423 |
source | IEEE Electronic Library (IEL) |
subjects | Cities and towns Generalized component service (GCS) Genetic algorithms granularity Optimization Quality of service quality of service (QoS) Semantics service composition Weather forecasting |
title | QoS-Aware Multigranularity Service Composition: Modeling and Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A32%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QoS-Aware%20Multigranularity%20Service%20Composition:%20Modeling%20and%20Optimization&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics.%20Systems&rft.au=Quanwang%20Wu&rft.date=2016-11&rft.volume=46&rft.issue=11&rft.spage=1565&rft.epage=1577&rft.pages=1565-1577&rft.issn=2168-2216&rft.eissn=2168-2232&rft.coden=ITSMFE&rft_id=info:doi/10.1109/TSMC.2015.2503384&rft_dat=%3Cproquest_RIE%3E4224100981%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1831037423&rft_id=info:pmid/&rft_ieee_id=7401117&rfr_iscdi=true |