QoS-Aware Multigranularity Service Composition: Modeling and Optimization

Quality of service (QoS)-aware optimal service composition aims to maximize the overall QoS value of the resulting composite service instance while meeting user-specified global QoS constraints. Traditional methods only consider as candidates service instances that implement one abstract service in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2016-11, Vol.46 (11), p.1565-1577
Hauptverfasser: Quanwang Wu, Ishikawa, Fuyuki, Qingsheng Zhu, Dong-Hoon Shin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1577
container_issue 11
container_start_page 1565
container_title IEEE transactions on systems, man, and cybernetics. Systems
container_volume 46
creator Quanwang Wu
Ishikawa, Fuyuki
Qingsheng Zhu
Dong-Hoon Shin
description Quality of service (QoS)-aware optimal service composition aims to maximize the overall QoS value of the resulting composite service instance while meeting user-specified global QoS constraints. Traditional methods only consider as candidates service instances that implement one abstract service in the composite service and neglect those that could perform multiple abstract services. To overcome this shortcoming, this paper proposes the concept of generalized component services (GCSs), which is defined in a semantic manner, to expand the selection scope so as to achieve a better solution. A QoS-aware multigranularity service composition model is formulated and how to identify all the GCSs for a composite service is elaborated. A backtracking-based algorithm and an extended genetic algorithm are proposed to optimize the resulting composite service instance. Lastly, evaluation results of these algorithms are described.
doi_str_mv 10.1109/TSMC.2015.2503384
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1831037423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7401117</ieee_id><sourcerecordid>4224100981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-d4dccd723f4c0493d7ecc07d35d85a495094dbf3ed66d49851d6b32e093647d3</originalsourceid><addsrcrecordid>eNo9kF1rwjAUhsPYYOL8AWM3hV3XnZOkabs7KfsQFBl6H2KSSqQ2XVo33K9fi-LVeeE87znwEPKIMEWE_GWzXhZTCphMaQKMZfyGjCiKLKaU0dtrRnFPJm27BwCkmWAgRmT-5dfx7FcFGy2PVed2QdXHSgXXnaK1DT9O26jwh8a3rnO-fo2W3tjK1btI1SZaNZ07uD81rB7IXamq1k4uc0w272-b4jNerD7mxWwRa5qzLjbcaG1SykqugefMpFZrSA1LTJYonieQc7MtmTVCGJ5nCRqxZdRCzgTvsTF5Pp9tgv8-2raTe38Mdf9RYsYQWMop6yk8Uzr4tg22lE1wBxVOEkEOzuTgTA7O5MVZ33k6d5y19sqnHBAxZf-ua2eZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1831037423</pqid></control><display><type>article</type><title>QoS-Aware Multigranularity Service Composition: Modeling and Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Quanwang Wu ; Ishikawa, Fuyuki ; Qingsheng Zhu ; Dong-Hoon Shin</creator><creatorcontrib>Quanwang Wu ; Ishikawa, Fuyuki ; Qingsheng Zhu ; Dong-Hoon Shin</creatorcontrib><description>Quality of service (QoS)-aware optimal service composition aims to maximize the overall QoS value of the resulting composite service instance while meeting user-specified global QoS constraints. Traditional methods only consider as candidates service instances that implement one abstract service in the composite service and neglect those that could perform multiple abstract services. To overcome this shortcoming, this paper proposes the concept of generalized component services (GCSs), which is defined in a semantic manner, to expand the selection scope so as to achieve a better solution. A QoS-aware multigranularity service composition model is formulated and how to identify all the GCSs for a composite service is elaborated. A backtracking-based algorithm and an extended genetic algorithm are proposed to optimize the resulting composite service instance. Lastly, evaluation results of these algorithms are described.</description><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMC.2015.2503384</identifier><identifier>CODEN: ITSMFE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cities and towns ; Generalized component service (GCS) ; Genetic algorithms ; granularity ; Optimization ; Quality of service ; quality of service (QoS) ; Semantics ; service composition ; Weather forecasting</subject><ispartof>IEEE transactions on systems, man, and cybernetics. Systems, 2016-11, Vol.46 (11), p.1565-1577</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-d4dccd723f4c0493d7ecc07d35d85a495094dbf3ed66d49851d6b32e093647d3</citedby><cites>FETCH-LOGICAL-c293t-d4dccd723f4c0493d7ecc07d35d85a495094dbf3ed66d49851d6b32e093647d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7401117$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7401117$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Quanwang Wu</creatorcontrib><creatorcontrib>Ishikawa, Fuyuki</creatorcontrib><creatorcontrib>Qingsheng Zhu</creatorcontrib><creatorcontrib>Dong-Hoon Shin</creatorcontrib><title>QoS-Aware Multigranularity Service Composition: Modeling and Optimization</title><title>IEEE transactions on systems, man, and cybernetics. Systems</title><addtitle>TSMC</addtitle><description>Quality of service (QoS)-aware optimal service composition aims to maximize the overall QoS value of the resulting composite service instance while meeting user-specified global QoS constraints. Traditional methods only consider as candidates service instances that implement one abstract service in the composite service and neglect those that could perform multiple abstract services. To overcome this shortcoming, this paper proposes the concept of generalized component services (GCSs), which is defined in a semantic manner, to expand the selection scope so as to achieve a better solution. A QoS-aware multigranularity service composition model is formulated and how to identify all the GCSs for a composite service is elaborated. A backtracking-based algorithm and an extended genetic algorithm are proposed to optimize the resulting composite service instance. Lastly, evaluation results of these algorithms are described.</description><subject>Cities and towns</subject><subject>Generalized component service (GCS)</subject><subject>Genetic algorithms</subject><subject>granularity</subject><subject>Optimization</subject><subject>Quality of service</subject><subject>quality of service (QoS)</subject><subject>Semantics</subject><subject>service composition</subject><subject>Weather forecasting</subject><issn>2168-2216</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1rwjAUhsPYYOL8AWM3hV3XnZOkabs7KfsQFBl6H2KSSqQ2XVo33K9fi-LVeeE87znwEPKIMEWE_GWzXhZTCphMaQKMZfyGjCiKLKaU0dtrRnFPJm27BwCkmWAgRmT-5dfx7FcFGy2PVed2QdXHSgXXnaK1DT9O26jwh8a3rnO-fo2W3tjK1btI1SZaNZ07uD81rB7IXamq1k4uc0w272-b4jNerD7mxWwRa5qzLjbcaG1SykqugefMpFZrSA1LTJYonieQc7MtmTVCGJ5nCRqxZdRCzgTvsTF5Pp9tgv8-2raTe38Mdf9RYsYQWMop6yk8Uzr4tg22lE1wBxVOEkEOzuTgTA7O5MVZ33k6d5y19sqnHBAxZf-ua2eZ</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Quanwang Wu</creator><creator>Ishikawa, Fuyuki</creator><creator>Qingsheng Zhu</creator><creator>Dong-Hoon Shin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201611</creationdate><title>QoS-Aware Multigranularity Service Composition: Modeling and Optimization</title><author>Quanwang Wu ; Ishikawa, Fuyuki ; Qingsheng Zhu ; Dong-Hoon Shin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-d4dccd723f4c0493d7ecc07d35d85a495094dbf3ed66d49851d6b32e093647d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cities and towns</topic><topic>Generalized component service (GCS)</topic><topic>Genetic algorithms</topic><topic>granularity</topic><topic>Optimization</topic><topic>Quality of service</topic><topic>quality of service (QoS)</topic><topic>Semantics</topic><topic>service composition</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quanwang Wu</creatorcontrib><creatorcontrib>Ishikawa, Fuyuki</creatorcontrib><creatorcontrib>Qingsheng Zhu</creatorcontrib><creatorcontrib>Dong-Hoon Shin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Quanwang Wu</au><au>Ishikawa, Fuyuki</au><au>Qingsheng Zhu</au><au>Dong-Hoon Shin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QoS-Aware Multigranularity Service Composition: Modeling and Optimization</atitle><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle><stitle>TSMC</stitle><date>2016-11</date><risdate>2016</risdate><volume>46</volume><issue>11</issue><spage>1565</spage><epage>1577</epage><pages>1565-1577</pages><issn>2168-2216</issn><eissn>2168-2232</eissn><coden>ITSMFE</coden><abstract>Quality of service (QoS)-aware optimal service composition aims to maximize the overall QoS value of the resulting composite service instance while meeting user-specified global QoS constraints. Traditional methods only consider as candidates service instances that implement one abstract service in the composite service and neglect those that could perform multiple abstract services. To overcome this shortcoming, this paper proposes the concept of generalized component services (GCSs), which is defined in a semantic manner, to expand the selection scope so as to achieve a better solution. A QoS-aware multigranularity service composition model is formulated and how to identify all the GCSs for a composite service is elaborated. A backtracking-based algorithm and an extended genetic algorithm are proposed to optimize the resulting composite service instance. Lastly, evaluation results of these algorithms are described.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMC.2015.2503384</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2216
ispartof IEEE transactions on systems, man, and cybernetics. Systems, 2016-11, Vol.46 (11), p.1565-1577
issn 2168-2216
2168-2232
language eng
recordid cdi_proquest_journals_1831037423
source IEEE Electronic Library (IEL)
subjects Cities and towns
Generalized component service (GCS)
Genetic algorithms
granularity
Optimization
Quality of service
quality of service (QoS)
Semantics
service composition
Weather forecasting
title QoS-Aware Multigranularity Service Composition: Modeling and Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A32%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QoS-Aware%20Multigranularity%20Service%20Composition:%20Modeling%20and%20Optimization&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics.%20Systems&rft.au=Quanwang%20Wu&rft.date=2016-11&rft.volume=46&rft.issue=11&rft.spage=1565&rft.epage=1577&rft.pages=1565-1577&rft.issn=2168-2216&rft.eissn=2168-2232&rft.coden=ITSMFE&rft_id=info:doi/10.1109/TSMC.2015.2503384&rft_dat=%3Cproquest_RIE%3E4224100981%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1831037423&rft_id=info:pmid/&rft_ieee_id=7401117&rfr_iscdi=true