A Pretreatment Workflow Scheduling Approach for Big Data Applications in Multicloud Environments

The rapid development of the latest distributed computing paradigm, i.e., cloud computing, generates a highly fragmented cloud market composed of numerous cloud providers and offers tremendous parallel computing ability to handle big data problems. One of the biggest challenges in multiclouds is eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE eTransactions on network and service management 2016-09, Vol.13 (3), p.581-594
Hauptverfasser: Bing Lin, Wenzhong Guo, Naixue Xiong, Guolong Chen, Vasilakos, Athanasios V., Hong Zhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 594
container_issue 3
container_start_page 581
container_title IEEE eTransactions on network and service management
container_volume 13
creator Bing Lin
Wenzhong Guo
Naixue Xiong
Guolong Chen
Vasilakos, Athanasios V.
Hong Zhang
description The rapid development of the latest distributed computing paradigm, i.e., cloud computing, generates a highly fragmented cloud market composed of numerous cloud providers and offers tremendous parallel computing ability to handle big data problems. One of the biggest challenges in multiclouds is efficient workflow scheduling. Although the workflow scheduling problem has been studied extensively, there are still very few primal works tailored for multicloud environments. Moreover, the existing research works either fail to satisfy the quality of service (QoS) requirements, or do not consider some fundamental features of cloud computing such as heterogeneity and elasticity of computing resources. In this paper, a scheduling algorithm, which is called multiclouds partial critical paths with pretreatment (MCPCPP), for big data workflows in multiclouds is presented. This algorithm incorporates the concept of partial critical paths, and aims to minimize the execution cost of workflow while satisfying the defined deadline constraint. Our approach takes into consideration the essential characteristics of multiclouds such as the charge per time interval, various instance types from different cloud providers, as well as homogeneous intrabandwidth vs. heterogeneous interbandwidth. Various types of workflows are used for evaluation purpose and our experimental results show that the MCPCPP is promising.
doi_str_mv 10.1109/TNSM.2016.2554143
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1831005429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7452617</ieee_id><sourcerecordid>4223948771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-41d2e3768816656c5ee7ec0a7ab6dfb86eaf399e71267df7567e2b63c72d89563</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EEqXwAIiLJc4tsR3bybFA-ZFaQGoRR-M6m9YljYvtgHh7ErVCnHa1mpnd_RA6J8mQkCS_mj_NpkOaEDGknKckZQeoR3JGByln8vBff4xOQlgnCc9ITnvofYRfPEQPOm6gjvjN-Y-yct94ZlZQNJWtl3i03XqnzQqXzuNru8S3OupuWlmjo3V1wLbG06aK1lSuKfC4_rLe1V1gOEVHpa4CnO1rH73ejec3D4PJ8_3jzWgyMIzncZCSggKTIsuIEFwYDiDBJFrqhSjKRSZAlyzPQRIqZFFKLiTQhWBG0iLLuWB9dLnLbW_9bCBEtXaNr9uVimSMtA-nNG9VZKcy3oXgoVRbbzfa_yiSqA6k6kCqDqTag2w9FzuPBYA_vUw5FUSyX2MEb6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1831005429</pqid></control><display><type>article</type><title>A Pretreatment Workflow Scheduling Approach for Big Data Applications in Multicloud Environments</title><source>IEEE Electronic Library (IEL)</source><creator>Bing Lin ; Wenzhong Guo ; Naixue Xiong ; Guolong Chen ; Vasilakos, Athanasios V. ; Hong Zhang</creator><creatorcontrib>Bing Lin ; Wenzhong Guo ; Naixue Xiong ; Guolong Chen ; Vasilakos, Athanasios V. ; Hong Zhang</creatorcontrib><description>The rapid development of the latest distributed computing paradigm, i.e., cloud computing, generates a highly fragmented cloud market composed of numerous cloud providers and offers tremendous parallel computing ability to handle big data problems. One of the biggest challenges in multiclouds is efficient workflow scheduling. Although the workflow scheduling problem has been studied extensively, there are still very few primal works tailored for multicloud environments. Moreover, the existing research works either fail to satisfy the quality of service (QoS) requirements, or do not consider some fundamental features of cloud computing such as heterogeneity and elasticity of computing resources. In this paper, a scheduling algorithm, which is called multiclouds partial critical paths with pretreatment (MCPCPP), for big data workflows in multiclouds is presented. This algorithm incorporates the concept of partial critical paths, and aims to minimize the execution cost of workflow while satisfying the defined deadline constraint. Our approach takes into consideration the essential characteristics of multiclouds such as the charge per time interval, various instance types from different cloud providers, as well as homogeneous intrabandwidth vs. heterogeneous interbandwidth. Various types of workflows are used for evaluation purpose and our experimental results show that the MCPCPP is promising.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2016.2554143</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Big Data ; Cloud computing ; multiclouds ; Optimization ; Quality of service ; Scheduling ; Scheduling algorithms ; scientific workflow</subject><ispartof>IEEE eTransactions on network and service management, 2016-09, Vol.13 (3), p.581-594</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-41d2e3768816656c5ee7ec0a7ab6dfb86eaf399e71267df7567e2b63c72d89563</citedby><cites>FETCH-LOGICAL-c359t-41d2e3768816656c5ee7ec0a7ab6dfb86eaf399e71267df7567e2b63c72d89563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7452617$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7452617$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bing Lin</creatorcontrib><creatorcontrib>Wenzhong Guo</creatorcontrib><creatorcontrib>Naixue Xiong</creatorcontrib><creatorcontrib>Guolong Chen</creatorcontrib><creatorcontrib>Vasilakos, Athanasios V.</creatorcontrib><creatorcontrib>Hong Zhang</creatorcontrib><title>A Pretreatment Workflow Scheduling Approach for Big Data Applications in Multicloud Environments</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>The rapid development of the latest distributed computing paradigm, i.e., cloud computing, generates a highly fragmented cloud market composed of numerous cloud providers and offers tremendous parallel computing ability to handle big data problems. One of the biggest challenges in multiclouds is efficient workflow scheduling. Although the workflow scheduling problem has been studied extensively, there are still very few primal works tailored for multicloud environments. Moreover, the existing research works either fail to satisfy the quality of service (QoS) requirements, or do not consider some fundamental features of cloud computing such as heterogeneity and elasticity of computing resources. In this paper, a scheduling algorithm, which is called multiclouds partial critical paths with pretreatment (MCPCPP), for big data workflows in multiclouds is presented. This algorithm incorporates the concept of partial critical paths, and aims to minimize the execution cost of workflow while satisfying the defined deadline constraint. Our approach takes into consideration the essential characteristics of multiclouds such as the charge per time interval, various instance types from different cloud providers, as well as homogeneous intrabandwidth vs. heterogeneous interbandwidth. Various types of workflows are used for evaluation purpose and our experimental results show that the MCPCPP is promising.</description><subject>Big Data</subject><subject>Cloud computing</subject><subject>multiclouds</subject><subject>Optimization</subject><subject>Quality of service</subject><subject>Scheduling</subject><subject>Scheduling algorithms</subject><subject>scientific workflow</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1OwzAQhC0EEqXwAIiLJc4tsR3bybFA-ZFaQGoRR-M6m9YljYvtgHh7ErVCnHa1mpnd_RA6J8mQkCS_mj_NpkOaEDGknKckZQeoR3JGByln8vBff4xOQlgnCc9ITnvofYRfPEQPOm6gjvjN-Y-yct94ZlZQNJWtl3i03XqnzQqXzuNru8S3OupuWlmjo3V1wLbG06aK1lSuKfC4_rLe1V1gOEVHpa4CnO1rH73ejec3D4PJ8_3jzWgyMIzncZCSggKTIsuIEFwYDiDBJFrqhSjKRSZAlyzPQRIqZFFKLiTQhWBG0iLLuWB9dLnLbW_9bCBEtXaNr9uVimSMtA-nNG9VZKcy3oXgoVRbbzfa_yiSqA6k6kCqDqTag2w9FzuPBYA_vUw5FUSyX2MEb6A</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Bing Lin</creator><creator>Wenzhong Guo</creator><creator>Naixue Xiong</creator><creator>Guolong Chen</creator><creator>Vasilakos, Athanasios V.</creator><creator>Hong Zhang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201609</creationdate><title>A Pretreatment Workflow Scheduling Approach for Big Data Applications in Multicloud Environments</title><author>Bing Lin ; Wenzhong Guo ; Naixue Xiong ; Guolong Chen ; Vasilakos, Athanasios V. ; Hong Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-41d2e3768816656c5ee7ec0a7ab6dfb86eaf399e71267df7567e2b63c72d89563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Big Data</topic><topic>Cloud computing</topic><topic>multiclouds</topic><topic>Optimization</topic><topic>Quality of service</topic><topic>Scheduling</topic><topic>Scheduling algorithms</topic><topic>scientific workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bing Lin</creatorcontrib><creatorcontrib>Wenzhong Guo</creatorcontrib><creatorcontrib>Naixue Xiong</creatorcontrib><creatorcontrib>Guolong Chen</creatorcontrib><creatorcontrib>Vasilakos, Athanasios V.</creatorcontrib><creatorcontrib>Hong Zhang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bing Lin</au><au>Wenzhong Guo</au><au>Naixue Xiong</au><au>Guolong Chen</au><au>Vasilakos, Athanasios V.</au><au>Hong Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Pretreatment Workflow Scheduling Approach for Big Data Applications in Multicloud Environments</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2016-09</date><risdate>2016</risdate><volume>13</volume><issue>3</issue><spage>581</spage><epage>594</epage><pages>581-594</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>The rapid development of the latest distributed computing paradigm, i.e., cloud computing, generates a highly fragmented cloud market composed of numerous cloud providers and offers tremendous parallel computing ability to handle big data problems. One of the biggest challenges in multiclouds is efficient workflow scheduling. Although the workflow scheduling problem has been studied extensively, there are still very few primal works tailored for multicloud environments. Moreover, the existing research works either fail to satisfy the quality of service (QoS) requirements, or do not consider some fundamental features of cloud computing such as heterogeneity and elasticity of computing resources. In this paper, a scheduling algorithm, which is called multiclouds partial critical paths with pretreatment (MCPCPP), for big data workflows in multiclouds is presented. This algorithm incorporates the concept of partial critical paths, and aims to minimize the execution cost of workflow while satisfying the defined deadline constraint. Our approach takes into consideration the essential characteristics of multiclouds such as the charge per time interval, various instance types from different cloud providers, as well as homogeneous intrabandwidth vs. heterogeneous interbandwidth. Various types of workflows are used for evaluation purpose and our experimental results show that the MCPCPP is promising.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSM.2016.2554143</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4537
ispartof IEEE eTransactions on network and service management, 2016-09, Vol.13 (3), p.581-594
issn 1932-4537
1932-4537
language eng
recordid cdi_proquest_journals_1831005429
source IEEE Electronic Library (IEL)
subjects Big Data
Cloud computing
multiclouds
Optimization
Quality of service
Scheduling
Scheduling algorithms
scientific workflow
title A Pretreatment Workflow Scheduling Approach for Big Data Applications in Multicloud Environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A16%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Pretreatment%20Workflow%20Scheduling%20Approach%20for%20Big%20Data%20Applications%20in%20Multicloud%20Environments&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Bing%20Lin&rft.date=2016-09&rft.volume=13&rft.issue=3&rft.spage=581&rft.epage=594&rft.pages=581-594&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2016.2554143&rft_dat=%3Cproquest_RIE%3E4223948771%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1831005429&rft_id=info:pmid/&rft_ieee_id=7452617&rfr_iscdi=true