A Pretreatment Workflow Scheduling Approach for Big Data Applications in Multicloud Environments
The rapid development of the latest distributed computing paradigm, i.e., cloud computing, generates a highly fragmented cloud market composed of numerous cloud providers and offers tremendous parallel computing ability to handle big data problems. One of the biggest challenges in multiclouds is eff...
Gespeichert in:
Veröffentlicht in: | IEEE eTransactions on network and service management 2016-09, Vol.13 (3), p.581-594 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 594 |
---|---|
container_issue | 3 |
container_start_page | 581 |
container_title | IEEE eTransactions on network and service management |
container_volume | 13 |
creator | Bing Lin Wenzhong Guo Naixue Xiong Guolong Chen Vasilakos, Athanasios V. Hong Zhang |
description | The rapid development of the latest distributed computing paradigm, i.e., cloud computing, generates a highly fragmented cloud market composed of numerous cloud providers and offers tremendous parallel computing ability to handle big data problems. One of the biggest challenges in multiclouds is efficient workflow scheduling. Although the workflow scheduling problem has been studied extensively, there are still very few primal works tailored for multicloud environments. Moreover, the existing research works either fail to satisfy the quality of service (QoS) requirements, or do not consider some fundamental features of cloud computing such as heterogeneity and elasticity of computing resources. In this paper, a scheduling algorithm, which is called multiclouds partial critical paths with pretreatment (MCPCPP), for big data workflows in multiclouds is presented. This algorithm incorporates the concept of partial critical paths, and aims to minimize the execution cost of workflow while satisfying the defined deadline constraint. Our approach takes into consideration the essential characteristics of multiclouds such as the charge per time interval, various instance types from different cloud providers, as well as homogeneous intrabandwidth vs. heterogeneous interbandwidth. Various types of workflows are used for evaluation purpose and our experimental results show that the MCPCPP is promising. |
doi_str_mv | 10.1109/TNSM.2016.2554143 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1831005429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7452617</ieee_id><sourcerecordid>4223948771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-41d2e3768816656c5ee7ec0a7ab6dfb86eaf399e71267df7567e2b63c72d89563</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EEqXwAIiLJc4tsR3bybFA-ZFaQGoRR-M6m9YljYvtgHh7ErVCnHa1mpnd_RA6J8mQkCS_mj_NpkOaEDGknKckZQeoR3JGByln8vBff4xOQlgnCc9ITnvofYRfPEQPOm6gjvjN-Y-yct94ZlZQNJWtl3i03XqnzQqXzuNru8S3OupuWlmjo3V1wLbG06aK1lSuKfC4_rLe1V1gOEVHpa4CnO1rH73ejec3D4PJ8_3jzWgyMIzncZCSggKTIsuIEFwYDiDBJFrqhSjKRSZAlyzPQRIqZFFKLiTQhWBG0iLLuWB9dLnLbW_9bCBEtXaNr9uVimSMtA-nNG9VZKcy3oXgoVRbbzfa_yiSqA6k6kCqDqTag2w9FzuPBYA_vUw5FUSyX2MEb6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1831005429</pqid></control><display><type>article</type><title>A Pretreatment Workflow Scheduling Approach for Big Data Applications in Multicloud Environments</title><source>IEEE Electronic Library (IEL)</source><creator>Bing Lin ; Wenzhong Guo ; Naixue Xiong ; Guolong Chen ; Vasilakos, Athanasios V. ; Hong Zhang</creator><creatorcontrib>Bing Lin ; Wenzhong Guo ; Naixue Xiong ; Guolong Chen ; Vasilakos, Athanasios V. ; Hong Zhang</creatorcontrib><description>The rapid development of the latest distributed computing paradigm, i.e., cloud computing, generates a highly fragmented cloud market composed of numerous cloud providers and offers tremendous parallel computing ability to handle big data problems. One of the biggest challenges in multiclouds is efficient workflow scheduling. Although the workflow scheduling problem has been studied extensively, there are still very few primal works tailored for multicloud environments. Moreover, the existing research works either fail to satisfy the quality of service (QoS) requirements, or do not consider some fundamental features of cloud computing such as heterogeneity and elasticity of computing resources. In this paper, a scheduling algorithm, which is called multiclouds partial critical paths with pretreatment (MCPCPP), for big data workflows in multiclouds is presented. This algorithm incorporates the concept of partial critical paths, and aims to minimize the execution cost of workflow while satisfying the defined deadline constraint. Our approach takes into consideration the essential characteristics of multiclouds such as the charge per time interval, various instance types from different cloud providers, as well as homogeneous intrabandwidth vs. heterogeneous interbandwidth. Various types of workflows are used for evaluation purpose and our experimental results show that the MCPCPP is promising.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2016.2554143</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Big Data ; Cloud computing ; multiclouds ; Optimization ; Quality of service ; Scheduling ; Scheduling algorithms ; scientific workflow</subject><ispartof>IEEE eTransactions on network and service management, 2016-09, Vol.13 (3), p.581-594</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-41d2e3768816656c5ee7ec0a7ab6dfb86eaf399e71267df7567e2b63c72d89563</citedby><cites>FETCH-LOGICAL-c359t-41d2e3768816656c5ee7ec0a7ab6dfb86eaf399e71267df7567e2b63c72d89563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7452617$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7452617$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bing Lin</creatorcontrib><creatorcontrib>Wenzhong Guo</creatorcontrib><creatorcontrib>Naixue Xiong</creatorcontrib><creatorcontrib>Guolong Chen</creatorcontrib><creatorcontrib>Vasilakos, Athanasios V.</creatorcontrib><creatorcontrib>Hong Zhang</creatorcontrib><title>A Pretreatment Workflow Scheduling Approach for Big Data Applications in Multicloud Environments</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>The rapid development of the latest distributed computing paradigm, i.e., cloud computing, generates a highly fragmented cloud market composed of numerous cloud providers and offers tremendous parallel computing ability to handle big data problems. One of the biggest challenges in multiclouds is efficient workflow scheduling. Although the workflow scheduling problem has been studied extensively, there are still very few primal works tailored for multicloud environments. Moreover, the existing research works either fail to satisfy the quality of service (QoS) requirements, or do not consider some fundamental features of cloud computing such as heterogeneity and elasticity of computing resources. In this paper, a scheduling algorithm, which is called multiclouds partial critical paths with pretreatment (MCPCPP), for big data workflows in multiclouds is presented. This algorithm incorporates the concept of partial critical paths, and aims to minimize the execution cost of workflow while satisfying the defined deadline constraint. Our approach takes into consideration the essential characteristics of multiclouds such as the charge per time interval, various instance types from different cloud providers, as well as homogeneous intrabandwidth vs. heterogeneous interbandwidth. Various types of workflows are used for evaluation purpose and our experimental results show that the MCPCPP is promising.</description><subject>Big Data</subject><subject>Cloud computing</subject><subject>multiclouds</subject><subject>Optimization</subject><subject>Quality of service</subject><subject>Scheduling</subject><subject>Scheduling algorithms</subject><subject>scientific workflow</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1OwzAQhC0EEqXwAIiLJc4tsR3bybFA-ZFaQGoRR-M6m9YljYvtgHh7ErVCnHa1mpnd_RA6J8mQkCS_mj_NpkOaEDGknKckZQeoR3JGByln8vBff4xOQlgnCc9ITnvofYRfPEQPOm6gjvjN-Y-yct94ZlZQNJWtl3i03XqnzQqXzuNru8S3OupuWlmjo3V1wLbG06aK1lSuKfC4_rLe1V1gOEVHpa4CnO1rH73ejec3D4PJ8_3jzWgyMIzncZCSggKTIsuIEFwYDiDBJFrqhSjKRSZAlyzPQRIqZFFKLiTQhWBG0iLLuWB9dLnLbW_9bCBEtXaNr9uVimSMtA-nNG9VZKcy3oXgoVRbbzfa_yiSqA6k6kCqDqTag2w9FzuPBYA_vUw5FUSyX2MEb6A</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Bing Lin</creator><creator>Wenzhong Guo</creator><creator>Naixue Xiong</creator><creator>Guolong Chen</creator><creator>Vasilakos, Athanasios V.</creator><creator>Hong Zhang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201609</creationdate><title>A Pretreatment Workflow Scheduling Approach for Big Data Applications in Multicloud Environments</title><author>Bing Lin ; Wenzhong Guo ; Naixue Xiong ; Guolong Chen ; Vasilakos, Athanasios V. ; Hong Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-41d2e3768816656c5ee7ec0a7ab6dfb86eaf399e71267df7567e2b63c72d89563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Big Data</topic><topic>Cloud computing</topic><topic>multiclouds</topic><topic>Optimization</topic><topic>Quality of service</topic><topic>Scheduling</topic><topic>Scheduling algorithms</topic><topic>scientific workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bing Lin</creatorcontrib><creatorcontrib>Wenzhong Guo</creatorcontrib><creatorcontrib>Naixue Xiong</creatorcontrib><creatorcontrib>Guolong Chen</creatorcontrib><creatorcontrib>Vasilakos, Athanasios V.</creatorcontrib><creatorcontrib>Hong Zhang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bing Lin</au><au>Wenzhong Guo</au><au>Naixue Xiong</au><au>Guolong Chen</au><au>Vasilakos, Athanasios V.</au><au>Hong Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Pretreatment Workflow Scheduling Approach for Big Data Applications in Multicloud Environments</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2016-09</date><risdate>2016</risdate><volume>13</volume><issue>3</issue><spage>581</spage><epage>594</epage><pages>581-594</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>The rapid development of the latest distributed computing paradigm, i.e., cloud computing, generates a highly fragmented cloud market composed of numerous cloud providers and offers tremendous parallel computing ability to handle big data problems. One of the biggest challenges in multiclouds is efficient workflow scheduling. Although the workflow scheduling problem has been studied extensively, there are still very few primal works tailored for multicloud environments. Moreover, the existing research works either fail to satisfy the quality of service (QoS) requirements, or do not consider some fundamental features of cloud computing such as heterogeneity and elasticity of computing resources. In this paper, a scheduling algorithm, which is called multiclouds partial critical paths with pretreatment (MCPCPP), for big data workflows in multiclouds is presented. This algorithm incorporates the concept of partial critical paths, and aims to minimize the execution cost of workflow while satisfying the defined deadline constraint. Our approach takes into consideration the essential characteristics of multiclouds such as the charge per time interval, various instance types from different cloud providers, as well as homogeneous intrabandwidth vs. heterogeneous interbandwidth. Various types of workflows are used for evaluation purpose and our experimental results show that the MCPCPP is promising.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSM.2016.2554143</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4537 |
ispartof | IEEE eTransactions on network and service management, 2016-09, Vol.13 (3), p.581-594 |
issn | 1932-4537 1932-4537 |
language | eng |
recordid | cdi_proquest_journals_1831005429 |
source | IEEE Electronic Library (IEL) |
subjects | Big Data Cloud computing multiclouds Optimization Quality of service Scheduling Scheduling algorithms scientific workflow |
title | A Pretreatment Workflow Scheduling Approach for Big Data Applications in Multicloud Environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A16%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Pretreatment%20Workflow%20Scheduling%20Approach%20for%20Big%20Data%20Applications%20in%20Multicloud%20Environments&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Bing%20Lin&rft.date=2016-09&rft.volume=13&rft.issue=3&rft.spage=581&rft.epage=594&rft.pages=581-594&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2016.2554143&rft_dat=%3Cproquest_RIE%3E4223948771%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1831005429&rft_id=info:pmid/&rft_ieee_id=7452617&rfr_iscdi=true |