An Iterative Dictionary Learning-Based Algorithm for DOA Estimation

This letter proposes a dictionary learning algorithm for solving the grid mismatch problem in direction of arrival (DOA) estimation from both the array sensor data and from the sign of the array sensor data. Discretization of the grid in the sparsity-based DOA estimation algorithms is a problem, whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2016-09, Vol.20 (9), p.1784-1787
Hauptverfasser: Zamani, Hojatollah, Zayyani, Hadi, Marvasti, Farrokh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1787
container_issue 9
container_start_page 1784
container_title IEEE communications letters
container_volume 20
creator Zamani, Hojatollah
Zayyani, Hadi
Marvasti, Farrokh
description This letter proposes a dictionary learning algorithm for solving the grid mismatch problem in direction of arrival (DOA) estimation from both the array sensor data and from the sign of the array sensor data. Discretization of the grid in the sparsity-based DOA estimation algorithms is a problem, which leads to a bias error. To compensate this bias error, a dictionary learning technique is suggested, which is based on minimizing a suitable cost function. We also propose an algorithm for the estimation of DOA from the sign of the measurements. It extends the iterative method with adaptive thresholding algorithm to the 1-b compressed sensing framework. Simulation results show the effectiveness of the dictionary learning-based algorithms in comparison with the counterpart algorithms in DOA estimation both from the sensors' data and from the sign of the sensors' data.
doi_str_mv 10.1109/LCOMM.2016.2587674
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1830949973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7505977</ieee_id><sourcerecordid>4223620891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-83714d16c650250351e2282f005c2e31d1581eeb09246c5da8ed976c795c79c93</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwAnCJxDllbcexfQxpgUqpeoGzZZxNSdUmxU6R-va4tOKwP4eZndVHyD2FCaWgn6pyuVhMGNB8woSSucwuyIgKoVIW22XcQelUSq2uyU0IawBQTNARKYsumQ_o7dD-YDJt3dD2nfWHpELru7Zbpc82YJ0Um1Xv2-FrmzS9T6bLIpmFod3ao_yWXDV2E_DuPMfk42X2Xr6l1fJ1XhZV6niWDanikmY1zV0ugAnggiJjijUAwjHktKZCUcRP0CzLnaitwlrL3EktYjnNx-TxdHfn--89hsGs-73vYqShioPOtJY8qthJ5XwfgsfG7Hx81B8MBXOEZf5gmSMsc4YVTQ8nU4uI_wYpQGgp-S9q32Og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1830949973</pqid></control><display><type>article</type><title>An Iterative Dictionary Learning-Based Algorithm for DOA Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Zamani, Hojatollah ; Zayyani, Hadi ; Marvasti, Farrokh</creator><creatorcontrib>Zamani, Hojatollah ; Zayyani, Hadi ; Marvasti, Farrokh</creatorcontrib><description>This letter proposes a dictionary learning algorithm for solving the grid mismatch problem in direction of arrival (DOA) estimation from both the array sensor data and from the sign of the array sensor data. Discretization of the grid in the sparsity-based DOA estimation algorithms is a problem, which leads to a bias error. To compensate this bias error, a dictionary learning technique is suggested, which is based on minimizing a suitable cost function. We also propose an algorithm for the estimation of DOA from the sign of the measurements. It extends the iterative method with adaptive thresholding algorithm to the 1-b compressed sensing framework. Simulation results show the effectiveness of the dictionary learning-based algorithms in comparison with the counterpart algorithms in DOA estimation both from the sensors' data and from the sign of the sensors' data.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2016.2587674</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Compressed sensing ; Cost function ; Dictionaries ; dictionary learning ; Direction of arrival ; Direction-of-arrival estimation ; Estimation ; Sensor arrays ; Sensors ; sign of the measurements ; steepest-descent</subject><ispartof>IEEE communications letters, 2016-09, Vol.20 (9), p.1784-1787</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-83714d16c650250351e2282f005c2e31d1581eeb09246c5da8ed976c795c79c93</citedby><cites>FETCH-LOGICAL-c344t-83714d16c650250351e2282f005c2e31d1581eeb09246c5da8ed976c795c79c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7505977$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7505977$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zamani, Hojatollah</creatorcontrib><creatorcontrib>Zayyani, Hadi</creatorcontrib><creatorcontrib>Marvasti, Farrokh</creatorcontrib><title>An Iterative Dictionary Learning-Based Algorithm for DOA Estimation</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>This letter proposes a dictionary learning algorithm for solving the grid mismatch problem in direction of arrival (DOA) estimation from both the array sensor data and from the sign of the array sensor data. Discretization of the grid in the sparsity-based DOA estimation algorithms is a problem, which leads to a bias error. To compensate this bias error, a dictionary learning technique is suggested, which is based on minimizing a suitable cost function. We also propose an algorithm for the estimation of DOA from the sign of the measurements. It extends the iterative method with adaptive thresholding algorithm to the 1-b compressed sensing framework. Simulation results show the effectiveness of the dictionary learning-based algorithms in comparison with the counterpart algorithms in DOA estimation both from the sensors' data and from the sign of the sensors' data.</description><subject>Algorithms</subject><subject>Compressed sensing</subject><subject>Cost function</subject><subject>Dictionaries</subject><subject>dictionary learning</subject><subject>Direction of arrival</subject><subject>Direction-of-arrival estimation</subject><subject>Estimation</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>sign of the measurements</subject><subject>steepest-descent</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhC0EEqXwAnCJxDllbcexfQxpgUqpeoGzZZxNSdUmxU6R-va4tOKwP4eZndVHyD2FCaWgn6pyuVhMGNB8woSSucwuyIgKoVIW22XcQelUSq2uyU0IawBQTNARKYsumQ_o7dD-YDJt3dD2nfWHpELru7Zbpc82YJ0Um1Xv2-FrmzS9T6bLIpmFod3ao_yWXDV2E_DuPMfk42X2Xr6l1fJ1XhZV6niWDanikmY1zV0ugAnggiJjijUAwjHktKZCUcRP0CzLnaitwlrL3EktYjnNx-TxdHfn--89hsGs-73vYqShioPOtJY8qthJ5XwfgsfG7Hx81B8MBXOEZf5gmSMsc4YVTQ8nU4uI_wYpQGgp-S9q32Og</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Zamani, Hojatollah</creator><creator>Zayyani, Hadi</creator><creator>Marvasti, Farrokh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201609</creationdate><title>An Iterative Dictionary Learning-Based Algorithm for DOA Estimation</title><author>Zamani, Hojatollah ; Zayyani, Hadi ; Marvasti, Farrokh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-83714d16c650250351e2282f005c2e31d1581eeb09246c5da8ed976c795c79c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Compressed sensing</topic><topic>Cost function</topic><topic>Dictionaries</topic><topic>dictionary learning</topic><topic>Direction of arrival</topic><topic>Direction-of-arrival estimation</topic><topic>Estimation</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>sign of the measurements</topic><topic>steepest-descent</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zamani, Hojatollah</creatorcontrib><creatorcontrib>Zayyani, Hadi</creatorcontrib><creatorcontrib>Marvasti, Farrokh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zamani, Hojatollah</au><au>Zayyani, Hadi</au><au>Marvasti, Farrokh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Iterative Dictionary Learning-Based Algorithm for DOA Estimation</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2016-09</date><risdate>2016</risdate><volume>20</volume><issue>9</issue><spage>1784</spage><epage>1787</epage><pages>1784-1787</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>This letter proposes a dictionary learning algorithm for solving the grid mismatch problem in direction of arrival (DOA) estimation from both the array sensor data and from the sign of the array sensor data. Discretization of the grid in the sparsity-based DOA estimation algorithms is a problem, which leads to a bias error. To compensate this bias error, a dictionary learning technique is suggested, which is based on minimizing a suitable cost function. We also propose an algorithm for the estimation of DOA from the sign of the measurements. It extends the iterative method with adaptive thresholding algorithm to the 1-b compressed sensing framework. Simulation results show the effectiveness of the dictionary learning-based algorithms in comparison with the counterpart algorithms in DOA estimation both from the sensors' data and from the sign of the sensors' data.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2016.2587674</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2016-09, Vol.20 (9), p.1784-1787
issn 1089-7798
1558-2558
language eng
recordid cdi_proquest_journals_1830949973
source IEEE Electronic Library (IEL)
subjects Algorithms
Compressed sensing
Cost function
Dictionaries
dictionary learning
Direction of arrival
Direction-of-arrival estimation
Estimation
Sensor arrays
Sensors
sign of the measurements
steepest-descent
title An Iterative Dictionary Learning-Based Algorithm for DOA Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T04%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Iterative%20Dictionary%20Learning-Based%20Algorithm%20for%20DOA%20Estimation&rft.jtitle=IEEE%20communications%20letters&rft.au=Zamani,%20Hojatollah&rft.date=2016-09&rft.volume=20&rft.issue=9&rft.spage=1784&rft.epage=1787&rft.pages=1784-1787&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2016.2587674&rft_dat=%3Cproquest_RIE%3E4223620891%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1830949973&rft_id=info:pmid/&rft_ieee_id=7505977&rfr_iscdi=true