An Iterative Dictionary Learning-Based Algorithm for DOA Estimation
This letter proposes a dictionary learning algorithm for solving the grid mismatch problem in direction of arrival (DOA) estimation from both the array sensor data and from the sign of the array sensor data. Discretization of the grid in the sparsity-based DOA estimation algorithms is a problem, whi...
Gespeichert in:
Veröffentlicht in: | IEEE communications letters 2016-09, Vol.20 (9), p.1784-1787 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1787 |
---|---|
container_issue | 9 |
container_start_page | 1784 |
container_title | IEEE communications letters |
container_volume | 20 |
creator | Zamani, Hojatollah Zayyani, Hadi Marvasti, Farrokh |
description | This letter proposes a dictionary learning algorithm for solving the grid mismatch problem in direction of arrival (DOA) estimation from both the array sensor data and from the sign of the array sensor data. Discretization of the grid in the sparsity-based DOA estimation algorithms is a problem, which leads to a bias error. To compensate this bias error, a dictionary learning technique is suggested, which is based on minimizing a suitable cost function. We also propose an algorithm for the estimation of DOA from the sign of the measurements. It extends the iterative method with adaptive thresholding algorithm to the 1-b compressed sensing framework. Simulation results show the effectiveness of the dictionary learning-based algorithms in comparison with the counterpart algorithms in DOA estimation both from the sensors' data and from the sign of the sensors' data. |
doi_str_mv | 10.1109/LCOMM.2016.2587674 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1830949973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7505977</ieee_id><sourcerecordid>4223620891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-83714d16c650250351e2282f005c2e31d1581eeb09246c5da8ed976c795c79c93</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwAnCJxDllbcexfQxpgUqpeoGzZZxNSdUmxU6R-va4tOKwP4eZndVHyD2FCaWgn6pyuVhMGNB8woSSucwuyIgKoVIW22XcQelUSq2uyU0IawBQTNARKYsumQ_o7dD-YDJt3dD2nfWHpELru7Zbpc82YJ0Um1Xv2-FrmzS9T6bLIpmFod3ao_yWXDV2E_DuPMfk42X2Xr6l1fJ1XhZV6niWDanikmY1zV0ugAnggiJjijUAwjHktKZCUcRP0CzLnaitwlrL3EktYjnNx-TxdHfn--89hsGs-73vYqShioPOtJY8qthJ5XwfgsfG7Hx81B8MBXOEZf5gmSMsc4YVTQ8nU4uI_wYpQGgp-S9q32Og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1830949973</pqid></control><display><type>article</type><title>An Iterative Dictionary Learning-Based Algorithm for DOA Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Zamani, Hojatollah ; Zayyani, Hadi ; Marvasti, Farrokh</creator><creatorcontrib>Zamani, Hojatollah ; Zayyani, Hadi ; Marvasti, Farrokh</creatorcontrib><description>This letter proposes a dictionary learning algorithm for solving the grid mismatch problem in direction of arrival (DOA) estimation from both the array sensor data and from the sign of the array sensor data. Discretization of the grid in the sparsity-based DOA estimation algorithms is a problem, which leads to a bias error. To compensate this bias error, a dictionary learning technique is suggested, which is based on minimizing a suitable cost function. We also propose an algorithm for the estimation of DOA from the sign of the measurements. It extends the iterative method with adaptive thresholding algorithm to the 1-b compressed sensing framework. Simulation results show the effectiveness of the dictionary learning-based algorithms in comparison with the counterpart algorithms in DOA estimation both from the sensors' data and from the sign of the sensors' data.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2016.2587674</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Compressed sensing ; Cost function ; Dictionaries ; dictionary learning ; Direction of arrival ; Direction-of-arrival estimation ; Estimation ; Sensor arrays ; Sensors ; sign of the measurements ; steepest-descent</subject><ispartof>IEEE communications letters, 2016-09, Vol.20 (9), p.1784-1787</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-83714d16c650250351e2282f005c2e31d1581eeb09246c5da8ed976c795c79c93</citedby><cites>FETCH-LOGICAL-c344t-83714d16c650250351e2282f005c2e31d1581eeb09246c5da8ed976c795c79c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7505977$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7505977$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zamani, Hojatollah</creatorcontrib><creatorcontrib>Zayyani, Hadi</creatorcontrib><creatorcontrib>Marvasti, Farrokh</creatorcontrib><title>An Iterative Dictionary Learning-Based Algorithm for DOA Estimation</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>This letter proposes a dictionary learning algorithm for solving the grid mismatch problem in direction of arrival (DOA) estimation from both the array sensor data and from the sign of the array sensor data. Discretization of the grid in the sparsity-based DOA estimation algorithms is a problem, which leads to a bias error. To compensate this bias error, a dictionary learning technique is suggested, which is based on minimizing a suitable cost function. We also propose an algorithm for the estimation of DOA from the sign of the measurements. It extends the iterative method with adaptive thresholding algorithm to the 1-b compressed sensing framework. Simulation results show the effectiveness of the dictionary learning-based algorithms in comparison with the counterpart algorithms in DOA estimation both from the sensors' data and from the sign of the sensors' data.</description><subject>Algorithms</subject><subject>Compressed sensing</subject><subject>Cost function</subject><subject>Dictionaries</subject><subject>dictionary learning</subject><subject>Direction of arrival</subject><subject>Direction-of-arrival estimation</subject><subject>Estimation</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>sign of the measurements</subject><subject>steepest-descent</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhC0EEqXwAnCJxDllbcexfQxpgUqpeoGzZZxNSdUmxU6R-va4tOKwP4eZndVHyD2FCaWgn6pyuVhMGNB8woSSucwuyIgKoVIW22XcQelUSq2uyU0IawBQTNARKYsumQ_o7dD-YDJt3dD2nfWHpELru7Zbpc82YJ0Um1Xv2-FrmzS9T6bLIpmFod3ao_yWXDV2E_DuPMfk42X2Xr6l1fJ1XhZV6niWDanikmY1zV0ugAnggiJjijUAwjHktKZCUcRP0CzLnaitwlrL3EktYjnNx-TxdHfn--89hsGs-73vYqShioPOtJY8qthJ5XwfgsfG7Hx81B8MBXOEZf5gmSMsc4YVTQ8nU4uI_wYpQGgp-S9q32Og</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Zamani, Hojatollah</creator><creator>Zayyani, Hadi</creator><creator>Marvasti, Farrokh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201609</creationdate><title>An Iterative Dictionary Learning-Based Algorithm for DOA Estimation</title><author>Zamani, Hojatollah ; Zayyani, Hadi ; Marvasti, Farrokh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-83714d16c650250351e2282f005c2e31d1581eeb09246c5da8ed976c795c79c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Compressed sensing</topic><topic>Cost function</topic><topic>Dictionaries</topic><topic>dictionary learning</topic><topic>Direction of arrival</topic><topic>Direction-of-arrival estimation</topic><topic>Estimation</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>sign of the measurements</topic><topic>steepest-descent</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zamani, Hojatollah</creatorcontrib><creatorcontrib>Zayyani, Hadi</creatorcontrib><creatorcontrib>Marvasti, Farrokh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zamani, Hojatollah</au><au>Zayyani, Hadi</au><au>Marvasti, Farrokh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Iterative Dictionary Learning-Based Algorithm for DOA Estimation</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2016-09</date><risdate>2016</risdate><volume>20</volume><issue>9</issue><spage>1784</spage><epage>1787</epage><pages>1784-1787</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>This letter proposes a dictionary learning algorithm for solving the grid mismatch problem in direction of arrival (DOA) estimation from both the array sensor data and from the sign of the array sensor data. Discretization of the grid in the sparsity-based DOA estimation algorithms is a problem, which leads to a bias error. To compensate this bias error, a dictionary learning technique is suggested, which is based on minimizing a suitable cost function. We also propose an algorithm for the estimation of DOA from the sign of the measurements. It extends the iterative method with adaptive thresholding algorithm to the 1-b compressed sensing framework. Simulation results show the effectiveness of the dictionary learning-based algorithms in comparison with the counterpart algorithms in DOA estimation both from the sensors' data and from the sign of the sensors' data.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2016.2587674</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-7798 |
ispartof | IEEE communications letters, 2016-09, Vol.20 (9), p.1784-1787 |
issn | 1089-7798 1558-2558 |
language | eng |
recordid | cdi_proquest_journals_1830949973 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Compressed sensing Cost function Dictionaries dictionary learning Direction of arrival Direction-of-arrival estimation Estimation Sensor arrays Sensors sign of the measurements steepest-descent |
title | An Iterative Dictionary Learning-Based Algorithm for DOA Estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T04%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Iterative%20Dictionary%20Learning-Based%20Algorithm%20for%20DOA%20Estimation&rft.jtitle=IEEE%20communications%20letters&rft.au=Zamani,%20Hojatollah&rft.date=2016-09&rft.volume=20&rft.issue=9&rft.spage=1784&rft.epage=1787&rft.pages=1784-1787&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2016.2587674&rft_dat=%3Cproquest_RIE%3E4223620891%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1830949973&rft_id=info:pmid/&rft_ieee_id=7505977&rfr_iscdi=true |