Discovering Team Structures in Soccer from Spatiotemporal Data

In team sports like soccer, utilizing tracking data for analysis is challenging due to the dynamic and multi-agent nature of the data. The biggest issue surrounds the changing of positions or "roles" between players on a frame-to-frame basis, which causes misalignment of the data and makes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2016-10, Vol.28 (10), p.2596-2605
Hauptverfasser: Bialkowski, Alina, Lucey, Patrick, Carr, Peter, Matthews, Iain, Sridharan, Sridha, Fookes, Clinton
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2605
container_issue 10
container_start_page 2596
container_title IEEE transactions on knowledge and data engineering
container_volume 28
creator Bialkowski, Alina
Lucey, Patrick
Carr, Peter
Matthews, Iain
Sridharan, Sridha
Fookes, Clinton
description In team sports like soccer, utilizing tracking data for analysis is challenging due to the dynamic and multi-agent nature of the data. The biggest issue surrounds the changing of positions or "roles" between players on a frame-to-frame basis, which causes misalignment of the data and makes it difficult to perform team analysis. In this paper, we present an unsupervised method to learn a formation template which allows us to "align" the tracking data at the frame level. Not only does this approach give important contextual information to facilitate large-scale analysis (e.g., we know when a player is in the left-wing position compared to left-back), it also yields the team structure or "formation" which serves as a strong descriptor for identifying a team's style. The utility of the approach is demonstrated on a full season of player and ball tracking data from a professional soccer league consisting of over 21.5 million frames of player tracking data.
doi_str_mv 10.1109/TKDE.2016.2581158
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1830949501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7492601</ieee_id><sourcerecordid>4223618001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-8a7eae735beb1f6c65f2486f23564a506f0a15dc06cef7b27ab8542dfc2a0eae3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwseN46k02y2Ysgbf3AgofWc8imE9nSNmuyK_jv3dLiaQbmed-Bh7FbhAkiVA-r99l8wgHVhEuNKPUZG6GUOudY4fmwg8BcFKK8ZFcpbQBAlxpH7HHWJBd-KDb7r2xFdpctu9i7ro-UsmafLYNzFDMfw3BpbdeEjnZtiHabzWxnr9mFt9tEN6c5Zp_P89X0NV98vLxNnxa5E8C7XNuSLJWFrKlGr5ySngutPC-kElaC8mBRrh0oR76seWlrLQVfe8ctDMlizO6PvW0M3z2lzmxCH_fDS4O6gEpUEnCg8Ei5GFKK5E0bm52NvwbBHDSZgyZz0GROmobM3THTENE_X4qKq6HxDxmhY6M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1830949501</pqid></control><display><type>article</type><title>Discovering Team Structures in Soccer from Spatiotemporal Data</title><source>IEEE Electronic Library (IEL)</source><creator>Bialkowski, Alina ; Lucey, Patrick ; Carr, Peter ; Matthews, Iain ; Sridharan, Sridha ; Fookes, Clinton</creator><creatorcontrib>Bialkowski, Alina ; Lucey, Patrick ; Carr, Peter ; Matthews, Iain ; Sridharan, Sridha ; Fookes, Clinton</creatorcontrib><description>In team sports like soccer, utilizing tracking data for analysis is challenging due to the dynamic and multi-agent nature of the data. The biggest issue surrounds the changing of positions or "roles" between players on a frame-to-frame basis, which causes misalignment of the data and makes it difficult to perform team analysis. In this paper, we present an unsupervised method to learn a formation template which allows us to "align" the tracking data at the frame level. Not only does this approach give important contextual information to facilitate large-scale analysis (e.g., we know when a player is in the left-wing position compared to left-back), it also yields the team structure or "formation" which serves as a strong descriptor for identifying a team's style. The utility of the approach is demonstrated on a full season of player and ball tracking data from a professional soccer league consisting of over 21.5 million frames of player tracking data.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2016.2581158</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>alignment ; Distribution functions ; Entropy ; Formation ; Graphical models ; group behaviour ; Heating ; multi-agent ; Probability density function ; role ; Satellites ; soccer ; spatio-temporal data ; Spatiotemporal phenomena ; sports analytics ; team analysis ; Trajectory</subject><ispartof>IEEE transactions on knowledge and data engineering, 2016-10, Vol.28 (10), p.2596-2605</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-8a7eae735beb1f6c65f2486f23564a506f0a15dc06cef7b27ab8542dfc2a0eae3</citedby><cites>FETCH-LOGICAL-c402t-8a7eae735beb1f6c65f2486f23564a506f0a15dc06cef7b27ab8542dfc2a0eae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7492601$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7492601$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bialkowski, Alina</creatorcontrib><creatorcontrib>Lucey, Patrick</creatorcontrib><creatorcontrib>Carr, Peter</creatorcontrib><creatorcontrib>Matthews, Iain</creatorcontrib><creatorcontrib>Sridharan, Sridha</creatorcontrib><creatorcontrib>Fookes, Clinton</creatorcontrib><title>Discovering Team Structures in Soccer from Spatiotemporal Data</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>In team sports like soccer, utilizing tracking data for analysis is challenging due to the dynamic and multi-agent nature of the data. The biggest issue surrounds the changing of positions or "roles" between players on a frame-to-frame basis, which causes misalignment of the data and makes it difficult to perform team analysis. In this paper, we present an unsupervised method to learn a formation template which allows us to "align" the tracking data at the frame level. Not only does this approach give important contextual information to facilitate large-scale analysis (e.g., we know when a player is in the left-wing position compared to left-back), it also yields the team structure or "formation" which serves as a strong descriptor for identifying a team's style. The utility of the approach is demonstrated on a full season of player and ball tracking data from a professional soccer league consisting of over 21.5 million frames of player tracking data.</description><subject>alignment</subject><subject>Distribution functions</subject><subject>Entropy</subject><subject>Formation</subject><subject>Graphical models</subject><subject>group behaviour</subject><subject>Heating</subject><subject>multi-agent</subject><subject>Probability density function</subject><subject>role</subject><subject>Satellites</subject><subject>soccer</subject><subject>spatio-temporal data</subject><subject>Spatiotemporal phenomena</subject><subject>sports analytics</subject><subject>team analysis</subject><subject>Trajectory</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwseN46k02y2Ysgbf3AgofWc8imE9nSNmuyK_jv3dLiaQbmed-Bh7FbhAkiVA-r99l8wgHVhEuNKPUZG6GUOudY4fmwg8BcFKK8ZFcpbQBAlxpH7HHWJBd-KDb7r2xFdpctu9i7ro-UsmafLYNzFDMfw3BpbdeEjnZtiHabzWxnr9mFt9tEN6c5Zp_P89X0NV98vLxNnxa5E8C7XNuSLJWFrKlGr5ySngutPC-kElaC8mBRrh0oR76seWlrLQVfe8ctDMlizO6PvW0M3z2lzmxCH_fDS4O6gEpUEnCg8Ei5GFKK5E0bm52NvwbBHDSZgyZz0GROmobM3THTENE_X4qKq6HxDxmhY6M</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Bialkowski, Alina</creator><creator>Lucey, Patrick</creator><creator>Carr, Peter</creator><creator>Matthews, Iain</creator><creator>Sridharan, Sridha</creator><creator>Fookes, Clinton</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20161001</creationdate><title>Discovering Team Structures in Soccer from Spatiotemporal Data</title><author>Bialkowski, Alina ; Lucey, Patrick ; Carr, Peter ; Matthews, Iain ; Sridharan, Sridha ; Fookes, Clinton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-8a7eae735beb1f6c65f2486f23564a506f0a15dc06cef7b27ab8542dfc2a0eae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>alignment</topic><topic>Distribution functions</topic><topic>Entropy</topic><topic>Formation</topic><topic>Graphical models</topic><topic>group behaviour</topic><topic>Heating</topic><topic>multi-agent</topic><topic>Probability density function</topic><topic>role</topic><topic>Satellites</topic><topic>soccer</topic><topic>spatio-temporal data</topic><topic>Spatiotemporal phenomena</topic><topic>sports analytics</topic><topic>team analysis</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bialkowski, Alina</creatorcontrib><creatorcontrib>Lucey, Patrick</creatorcontrib><creatorcontrib>Carr, Peter</creatorcontrib><creatorcontrib>Matthews, Iain</creatorcontrib><creatorcontrib>Sridharan, Sridha</creatorcontrib><creatorcontrib>Fookes, Clinton</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bialkowski, Alina</au><au>Lucey, Patrick</au><au>Carr, Peter</au><au>Matthews, Iain</au><au>Sridharan, Sridha</au><au>Fookes, Clinton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovering Team Structures in Soccer from Spatiotemporal Data</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>28</volume><issue>10</issue><spage>2596</spage><epage>2605</epage><pages>2596-2605</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>In team sports like soccer, utilizing tracking data for analysis is challenging due to the dynamic and multi-agent nature of the data. The biggest issue surrounds the changing of positions or "roles" between players on a frame-to-frame basis, which causes misalignment of the data and makes it difficult to perform team analysis. In this paper, we present an unsupervised method to learn a formation template which allows us to "align" the tracking data at the frame level. Not only does this approach give important contextual information to facilitate large-scale analysis (e.g., we know when a player is in the left-wing position compared to left-back), it also yields the team structure or "formation" which serves as a strong descriptor for identifying a team's style. The utility of the approach is demonstrated on a full season of player and ball tracking data from a professional soccer league consisting of over 21.5 million frames of player tracking data.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2016.2581158</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2016-10, Vol.28 (10), p.2596-2605
issn 1041-4347
1558-2191
language eng
recordid cdi_proquest_journals_1830949501
source IEEE Electronic Library (IEL)
subjects alignment
Distribution functions
Entropy
Formation
Graphical models
group behaviour
Heating
multi-agent
Probability density function
role
Satellites
soccer
spatio-temporal data
Spatiotemporal phenomena
sports analytics
team analysis
Trajectory
title Discovering Team Structures in Soccer from Spatiotemporal Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T20%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovering%20Team%20Structures%20in%20Soccer%20from%20Spatiotemporal%20Data&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Bialkowski,%20Alina&rft.date=2016-10-01&rft.volume=28&rft.issue=10&rft.spage=2596&rft.epage=2605&rft.pages=2596-2605&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2016.2581158&rft_dat=%3Cproquest_RIE%3E4223618001%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1830949501&rft_id=info:pmid/&rft_ieee_id=7492601&rfr_iscdi=true