EFRON-STEIN INEQUALITIES FOR RANDOM MATRICES

This paper establishes new concentration inequalities for random matrices constructed from independent random variables. These results are analogous with the generalized Efron-Stein inequalities developed by Boucheron et al. The proofs rely on the method of exchangeable pairs.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2016-09, Vol.44 (5), p.3431-3473
Hauptverfasser: Paulin, Daniel, Mackey, Lester, Tropp, Joel A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3473
container_issue 5
container_start_page 3431
container_title The Annals of probability
container_volume 44
creator Paulin, Daniel
Mackey, Lester
Tropp, Joel A.
description This paper establishes new concentration inequalities for random matrices constructed from independent random variables. These results are analogous with the generalized Efron-Stein inequalities developed by Boucheron et al. The proofs rely on the method of exchangeable pairs.
doi_str_mv 10.1214/15-AOP1054
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1826399367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44072049</jstor_id><sourcerecordid>44072049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-9c397b88e7043037c67dbb80b4ccede5f1a53d5347cf6b2a93d983cc4f519ddd3</originalsourceid><addsrcrecordid>eNo90MFLwzAYBfAgCs7pxbtQ8CZGv69JmuRYtk4LW6tdB95Cm7TgUDuT7eB_72TD07v8eA8eIdcIDxgjf0RB0_IFQfATMooxUVRp_nZKRgAaKUqtzslFCGsASKTkI3KfzaqyoMs6y4soL7LXVTrP6zxbRrOyiqq0mJaLaJHWVT7JlpfkrG8-Qnd1zDFZzbJ68kzn5VM-SefUMqG2VFumZatUJ4EzYNIm0rWtgpZb27lO9NgI5gTj0vZJGzeaOa2YtbwXqJ1zbExuD70bP3zvurA162Hnv_aTBlWcMK1ZIvfq7qCsH0LwXW82_v2z8T8Gwfy9YVCY4xt7fHPA67Ad_L_kHGQMXLNfGkVWBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826399367</pqid></control><display><type>article</type><title>EFRON-STEIN INEQUALITIES FOR RANDOM MATRICES</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Paulin, Daniel ; Mackey, Lester ; Tropp, Joel A.</creator><creatorcontrib>Paulin, Daniel ; Mackey, Lester ; Tropp, Joel A.</creatorcontrib><description>This paper establishes new concentration inequalities for random matrices constructed from independent random variables. These results are analogous with the generalized Efron-Stein inequalities developed by Boucheron et al. The proofs rely on the method of exchangeable pairs.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/15-AOP1054</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Coordinate systems ; Covariance matrices ; Inequality ; Mathematical inequalities ; Mathematical vectors ; Matrices ; Polynomials ; Proxy reporting ; Proxy statements ; Random variables ; Scalars ; Studies</subject><ispartof>The Annals of probability, 2016-09, Vol.44 (5), p.3431-3473</ispartof><rights>Copyright © 2016 Institute of Mathematical Statistics</rights><rights>Copyright Institute of Mathematical Statistics Sep 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-9c397b88e7043037c67dbb80b4ccede5f1a53d5347cf6b2a93d983cc4f519ddd3</citedby><cites>FETCH-LOGICAL-c358t-9c397b88e7043037c67dbb80b4ccede5f1a53d5347cf6b2a93d983cc4f519ddd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44072049$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44072049$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,27905,27906,57998,58002,58231,58235</link.rule.ids></links><search><creatorcontrib>Paulin, Daniel</creatorcontrib><creatorcontrib>Mackey, Lester</creatorcontrib><creatorcontrib>Tropp, Joel A.</creatorcontrib><title>EFRON-STEIN INEQUALITIES FOR RANDOM MATRICES</title><title>The Annals of probability</title><description>This paper establishes new concentration inequalities for random matrices constructed from independent random variables. These results are analogous with the generalized Efron-Stein inequalities developed by Boucheron et al. The proofs rely on the method of exchangeable pairs.</description><subject>Coordinate systems</subject><subject>Covariance matrices</subject><subject>Inequality</subject><subject>Mathematical inequalities</subject><subject>Mathematical vectors</subject><subject>Matrices</subject><subject>Polynomials</subject><subject>Proxy reporting</subject><subject>Proxy statements</subject><subject>Random variables</subject><subject>Scalars</subject><subject>Studies</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo90MFLwzAYBfAgCs7pxbtQ8CZGv69JmuRYtk4LW6tdB95Cm7TgUDuT7eB_72TD07v8eA8eIdcIDxgjf0RB0_IFQfATMooxUVRp_nZKRgAaKUqtzslFCGsASKTkI3KfzaqyoMs6y4soL7LXVTrP6zxbRrOyiqq0mJaLaJHWVT7JlpfkrG8-Qnd1zDFZzbJ68kzn5VM-SefUMqG2VFumZatUJ4EzYNIm0rWtgpZb27lO9NgI5gTj0vZJGzeaOa2YtbwXqJ1zbExuD70bP3zvurA162Hnv_aTBlWcMK1ZIvfq7qCsH0LwXW82_v2z8T8Gwfy9YVCY4xt7fHPA67Ad_L_kHGQMXLNfGkVWBA</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Paulin, Daniel</creator><creator>Mackey, Lester</creator><creator>Tropp, Joel A.</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20160901</creationdate><title>EFRON-STEIN INEQUALITIES FOR RANDOM MATRICES</title><author>Paulin, Daniel ; Mackey, Lester ; Tropp, Joel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-9c397b88e7043037c67dbb80b4ccede5f1a53d5347cf6b2a93d983cc4f519ddd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Coordinate systems</topic><topic>Covariance matrices</topic><topic>Inequality</topic><topic>Mathematical inequalities</topic><topic>Mathematical vectors</topic><topic>Matrices</topic><topic>Polynomials</topic><topic>Proxy reporting</topic><topic>Proxy statements</topic><topic>Random variables</topic><topic>Scalars</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paulin, Daniel</creatorcontrib><creatorcontrib>Mackey, Lester</creatorcontrib><creatorcontrib>Tropp, Joel A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paulin, Daniel</au><au>Mackey, Lester</au><au>Tropp, Joel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EFRON-STEIN INEQUALITIES FOR RANDOM MATRICES</atitle><jtitle>The Annals of probability</jtitle><date>2016-09-01</date><risdate>2016</risdate><volume>44</volume><issue>5</issue><spage>3431</spage><epage>3473</epage><pages>3431-3473</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><abstract>This paper establishes new concentration inequalities for random matrices constructed from independent random variables. These results are analogous with the generalized Efron-Stein inequalities developed by Boucheron et al. The proofs rely on the method of exchangeable pairs.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/15-AOP1054</doi><tpages>43</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-1798
ispartof The Annals of probability, 2016-09, Vol.44 (5), p.3431-3473
issn 0091-1798
2168-894X
language eng
recordid cdi_proquest_journals_1826399367
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
subjects Coordinate systems
Covariance matrices
Inequality
Mathematical inequalities
Mathematical vectors
Matrices
Polynomials
Proxy reporting
Proxy statements
Random variables
Scalars
Studies
title EFRON-STEIN INEQUALITIES FOR RANDOM MATRICES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A59%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EFRON-STEIN%20INEQUALITIES%20FOR%20RANDOM%20MATRICES&rft.jtitle=The%20Annals%20of%20probability&rft.au=Paulin,%20Daniel&rft.date=2016-09-01&rft.volume=44&rft.issue=5&rft.spage=3431&rft.epage=3473&rft.pages=3431-3473&rft.issn=0091-1798&rft.eissn=2168-894X&rft_id=info:doi/10.1214/15-AOP1054&rft_dat=%3Cjstor_proqu%3E44072049%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826399367&rft_id=info:pmid/&rft_jstor_id=44072049&rfr_iscdi=true