EFRON-STEIN INEQUALITIES FOR RANDOM MATRICES
This paper establishes new concentration inequalities for random matrices constructed from independent random variables. These results are analogous with the generalized Efron-Stein inequalities developed by Boucheron et al. The proofs rely on the method of exchangeable pairs.
Gespeichert in:
Veröffentlicht in: | The Annals of probability 2016-09, Vol.44 (5), p.3431-3473 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3473 |
---|---|
container_issue | 5 |
container_start_page | 3431 |
container_title | The Annals of probability |
container_volume | 44 |
creator | Paulin, Daniel Mackey, Lester Tropp, Joel A. |
description | This paper establishes new concentration inequalities for random matrices constructed from independent random variables. These results are analogous with the generalized Efron-Stein inequalities developed by Boucheron et al. The proofs rely on the method of exchangeable pairs. |
doi_str_mv | 10.1214/15-AOP1054 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1826399367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44072049</jstor_id><sourcerecordid>44072049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-9c397b88e7043037c67dbb80b4ccede5f1a53d5347cf6b2a93d983cc4f519ddd3</originalsourceid><addsrcrecordid>eNo90MFLwzAYBfAgCs7pxbtQ8CZGv69JmuRYtk4LW6tdB95Cm7TgUDuT7eB_72TD07v8eA8eIdcIDxgjf0RB0_IFQfATMooxUVRp_nZKRgAaKUqtzslFCGsASKTkI3KfzaqyoMs6y4soL7LXVTrP6zxbRrOyiqq0mJaLaJHWVT7JlpfkrG8-Qnd1zDFZzbJ68kzn5VM-SefUMqG2VFumZatUJ4EzYNIm0rWtgpZb27lO9NgI5gTj0vZJGzeaOa2YtbwXqJ1zbExuD70bP3zvurA162Hnv_aTBlWcMK1ZIvfq7qCsH0LwXW82_v2z8T8Gwfy9YVCY4xt7fHPA67Ad_L_kHGQMXLNfGkVWBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826399367</pqid></control><display><type>article</type><title>EFRON-STEIN INEQUALITIES FOR RANDOM MATRICES</title><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Paulin, Daniel ; Mackey, Lester ; Tropp, Joel A.</creator><creatorcontrib>Paulin, Daniel ; Mackey, Lester ; Tropp, Joel A.</creatorcontrib><description>This paper establishes new concentration inequalities for random matrices constructed from independent random variables. These results are analogous with the generalized Efron-Stein inequalities developed by Boucheron et al. The proofs rely on the method of exchangeable pairs.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/15-AOP1054</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Coordinate systems ; Covariance matrices ; Inequality ; Mathematical inequalities ; Mathematical vectors ; Matrices ; Polynomials ; Proxy reporting ; Proxy statements ; Random variables ; Scalars ; Studies</subject><ispartof>The Annals of probability, 2016-09, Vol.44 (5), p.3431-3473</ispartof><rights>Copyright © 2016 Institute of Mathematical Statistics</rights><rights>Copyright Institute of Mathematical Statistics Sep 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-9c397b88e7043037c67dbb80b4ccede5f1a53d5347cf6b2a93d983cc4f519ddd3</citedby><cites>FETCH-LOGICAL-c358t-9c397b88e7043037c67dbb80b4ccede5f1a53d5347cf6b2a93d983cc4f519ddd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44072049$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44072049$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,27905,27906,57998,58002,58231,58235</link.rule.ids></links><search><creatorcontrib>Paulin, Daniel</creatorcontrib><creatorcontrib>Mackey, Lester</creatorcontrib><creatorcontrib>Tropp, Joel A.</creatorcontrib><title>EFRON-STEIN INEQUALITIES FOR RANDOM MATRICES</title><title>The Annals of probability</title><description>This paper establishes new concentration inequalities for random matrices constructed from independent random variables. These results are analogous with the generalized Efron-Stein inequalities developed by Boucheron et al. The proofs rely on the method of exchangeable pairs.</description><subject>Coordinate systems</subject><subject>Covariance matrices</subject><subject>Inequality</subject><subject>Mathematical inequalities</subject><subject>Mathematical vectors</subject><subject>Matrices</subject><subject>Polynomials</subject><subject>Proxy reporting</subject><subject>Proxy statements</subject><subject>Random variables</subject><subject>Scalars</subject><subject>Studies</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo90MFLwzAYBfAgCs7pxbtQ8CZGv69JmuRYtk4LW6tdB95Cm7TgUDuT7eB_72TD07v8eA8eIdcIDxgjf0RB0_IFQfATMooxUVRp_nZKRgAaKUqtzslFCGsASKTkI3KfzaqyoMs6y4soL7LXVTrP6zxbRrOyiqq0mJaLaJHWVT7JlpfkrG8-Qnd1zDFZzbJ68kzn5VM-SefUMqG2VFumZatUJ4EzYNIm0rWtgpZb27lO9NgI5gTj0vZJGzeaOa2YtbwXqJ1zbExuD70bP3zvurA162Hnv_aTBlWcMK1ZIvfq7qCsH0LwXW82_v2z8T8Gwfy9YVCY4xt7fHPA67Ad_L_kHGQMXLNfGkVWBA</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Paulin, Daniel</creator><creator>Mackey, Lester</creator><creator>Tropp, Joel A.</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20160901</creationdate><title>EFRON-STEIN INEQUALITIES FOR RANDOM MATRICES</title><author>Paulin, Daniel ; Mackey, Lester ; Tropp, Joel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-9c397b88e7043037c67dbb80b4ccede5f1a53d5347cf6b2a93d983cc4f519ddd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Coordinate systems</topic><topic>Covariance matrices</topic><topic>Inequality</topic><topic>Mathematical inequalities</topic><topic>Mathematical vectors</topic><topic>Matrices</topic><topic>Polynomials</topic><topic>Proxy reporting</topic><topic>Proxy statements</topic><topic>Random variables</topic><topic>Scalars</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paulin, Daniel</creatorcontrib><creatorcontrib>Mackey, Lester</creatorcontrib><creatorcontrib>Tropp, Joel A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paulin, Daniel</au><au>Mackey, Lester</au><au>Tropp, Joel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EFRON-STEIN INEQUALITIES FOR RANDOM MATRICES</atitle><jtitle>The Annals of probability</jtitle><date>2016-09-01</date><risdate>2016</risdate><volume>44</volume><issue>5</issue><spage>3431</spage><epage>3473</epage><pages>3431-3473</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><abstract>This paper establishes new concentration inequalities for random matrices constructed from independent random variables. These results are analogous with the generalized Efron-Stein inequalities developed by Boucheron et al. The proofs rely on the method of exchangeable pairs.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/15-AOP1054</doi><tpages>43</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-1798 |
ispartof | The Annals of probability, 2016-09, Vol.44 (5), p.3431-3473 |
issn | 0091-1798 2168-894X |
language | eng |
recordid | cdi_proquest_journals_1826399367 |
source | JSTOR Mathematics & Statistics; Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete |
subjects | Coordinate systems Covariance matrices Inequality Mathematical inequalities Mathematical vectors Matrices Polynomials Proxy reporting Proxy statements Random variables Scalars Studies |
title | EFRON-STEIN INEQUALITIES FOR RANDOM MATRICES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A59%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EFRON-STEIN%20INEQUALITIES%20FOR%20RANDOM%20MATRICES&rft.jtitle=The%20Annals%20of%20probability&rft.au=Paulin,%20Daniel&rft.date=2016-09-01&rft.volume=44&rft.issue=5&rft.spage=3431&rft.epage=3473&rft.pages=3431-3473&rft.issn=0091-1798&rft.eissn=2168-894X&rft_id=info:doi/10.1214/15-AOP1054&rft_dat=%3Cjstor_proqu%3E44072049%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826399367&rft_id=info:pmid/&rft_jstor_id=44072049&rfr_iscdi=true |