Precise Deviations Results for the Maxima of Some Determinantal Point Processes: the Upper Tail
We prove precise deviations results in the sense of Cramér and Petrov for the upper tail of the distribution of the maximal value for a special class of determinantal point processes that play an important role in random matrix theory. Here we cover all three regimes of moderate, large and superlarg...
Gespeichert in:
Veröffentlicht in: | Symmetry, integrability and geometry, methods and applications integrability and geometry, methods and applications, 2016-09, Vol.12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Symmetry, integrability and geometry, methods and applications |
container_volume | 12 |
creator | Eichelsbacher, Peter Kriecherbauer, Thomas Schüler, Katharina |
description | We prove precise deviations results in the sense of Cramér and Petrov for the upper tail of the distribution of the maximal value for a special class of determinantal point processes that play an important role in random matrix theory. Here we cover all three regimes of moderate, large and superlarge deviations for which we determine the leading order description of the tail probabilities. As a corollary of our results we identify the region within the regime of moderate deviations for which the limiting Tracy-Widom law still predicts the correct leading order behavior. Our proofs use that the determinantal point process is given by the Christoffel-Darboux kernel for an associated family of orthogonal polynomials. The necessary asymptotic information on this kernel has mostly been obtained in [Kriecherbauer T., Schubert K., Schüler K., Venker M., Markov Process. Related Fields 21 (2015), 639-694]. In the superlarge regime these results of do not suffice and we put stronger assumptions on the point processes. The results of the present paper and the relevant parts of [Kriecherbauer T., Schubert K., Schüler K., Venker M., Markov Process. Related Fields 21 (2015), 639-694] have been proved in the dissertation [Schüler K., Ph.D. Thesis, Universität Bayreuth, 2015]. [ProQuest: [...] denotes formulae omitted.] |
doi_str_mv | 10.3842/SIGMA.2016.093 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1824852102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4200362491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2223-5bc3129536e6d77a3f7532f2d577bbc86d689ba90c896b52e613f723e2e706e73</originalsourceid><addsrcrecordid>eNpNkM9PwjAUxxujiYhePTfxvNkfa7t5IyhIApEInJuuvMWRsc62GP3vHeDB0_sePu998z4I3VOS8jxjj6vZdDFKGaEyJQW_QAOaU5EQKYrLf_ka3YSwIySTmSQDpJcebB0AP8NXbWLt2oDfIRyaGHDlPI4fgBfmu94b7Cq8cvsjGcHv69a00TR46eo24qV3FkKA8HTa2HQdeLw2dXOLrirTBLj7m0O0mbysx6_J_G06G4_miWWM8USUllNWCC5BbpUyvFKCs4pthVJlaXO5lXlRmoLYvJClYCBpjzAODBSRoPgQPZzvdt59HiBEvXMH3_aVmuYsywWjhPVUeqasdyF4qHTn-9f8j6ZEHyXqk0R9lKh7ifwXad9j6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1824852102</pqid></control><display><type>article</type><title>Precise Deviations Results for the Maxima of Some Determinantal Point Processes: the Upper Tail</title><source>Math-Net.Ru (free access)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Eichelsbacher, Peter ; Kriecherbauer, Thomas ; Schüler, Katharina</creator><creatorcontrib>Eichelsbacher, Peter ; Kriecherbauer, Thomas ; Schüler, Katharina ; Ruhr-Universit ; Universität Bayreuth, Germany ; 228 ; t Bochum, Germany</creatorcontrib><description>We prove precise deviations results in the sense of Cramér and Petrov for the upper tail of the distribution of the maximal value for a special class of determinantal point processes that play an important role in random matrix theory. Here we cover all three regimes of moderate, large and superlarge deviations for which we determine the leading order description of the tail probabilities. As a corollary of our results we identify the region within the regime of moderate deviations for which the limiting Tracy-Widom law still predicts the correct leading order behavior. Our proofs use that the determinantal point process is given by the Christoffel-Darboux kernel for an associated family of orthogonal polynomials. The necessary asymptotic information on this kernel has mostly been obtained in [Kriecherbauer T., Schubert K., Schüler K., Venker M., Markov Process. Related Fields 21 (2015), 639-694]. In the superlarge regime these results of do not suffice and we put stronger assumptions on the point processes. The results of the present paper and the relevant parts of [Kriecherbauer T., Schubert K., Schüler K., Venker M., Markov Process. Related Fields 21 (2015), 639-694] have been proved in the dissertation [Schüler K., Ph.D. Thesis, Universität Bayreuth, 2015]. [ProQuest: [...] denotes formulae omitted.]</description><identifier>ISSN: 1815-0659</identifier><identifier>EISSN: 1815-0659</identifier><identifier>DOI: 10.3842/SIGMA.2016.093</identifier><language>eng</language><publisher>Kiev: National Academy of Sciences of Ukraine</publisher><ispartof>Symmetry, integrability and geometry, methods and applications, 2016-09, Vol.12</ispartof><rights>Copyright National Academy of Sciences of Ukraine 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2223-5bc3129536e6d77a3f7532f2d577bbc86d689ba90c896b52e613f723e2e706e73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Eichelsbacher, Peter</creatorcontrib><creatorcontrib>Kriecherbauer, Thomas</creatorcontrib><creatorcontrib>Schüler, Katharina</creatorcontrib><creatorcontrib>Ruhr-Universit</creatorcontrib><creatorcontrib>Universität Bayreuth, Germany</creatorcontrib><creatorcontrib>228</creatorcontrib><creatorcontrib>t Bochum, Germany</creatorcontrib><title>Precise Deviations Results for the Maxima of Some Determinantal Point Processes: the Upper Tail</title><title>Symmetry, integrability and geometry, methods and applications</title><description>We prove precise deviations results in the sense of Cramér and Petrov for the upper tail of the distribution of the maximal value for a special class of determinantal point processes that play an important role in random matrix theory. Here we cover all three regimes of moderate, large and superlarge deviations for which we determine the leading order description of the tail probabilities. As a corollary of our results we identify the region within the regime of moderate deviations for which the limiting Tracy-Widom law still predicts the correct leading order behavior. Our proofs use that the determinantal point process is given by the Christoffel-Darboux kernel for an associated family of orthogonal polynomials. The necessary asymptotic information on this kernel has mostly been obtained in [Kriecherbauer T., Schubert K., Schüler K., Venker M., Markov Process. Related Fields 21 (2015), 639-694]. In the superlarge regime these results of do not suffice and we put stronger assumptions on the point processes. The results of the present paper and the relevant parts of [Kriecherbauer T., Schubert K., Schüler K., Venker M., Markov Process. Related Fields 21 (2015), 639-694] have been proved in the dissertation [Schüler K., Ph.D. Thesis, Universität Bayreuth, 2015]. [ProQuest: [...] denotes formulae omitted.]</description><issn>1815-0659</issn><issn>1815-0659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkM9PwjAUxxujiYhePTfxvNkfa7t5IyhIApEInJuuvMWRsc62GP3vHeDB0_sePu998z4I3VOS8jxjj6vZdDFKGaEyJQW_QAOaU5EQKYrLf_ka3YSwIySTmSQDpJcebB0AP8NXbWLt2oDfIRyaGHDlPI4fgBfmu94b7Cq8cvsjGcHv69a00TR46eo24qV3FkKA8HTa2HQdeLw2dXOLrirTBLj7m0O0mbysx6_J_G06G4_miWWM8USUllNWCC5BbpUyvFKCs4pthVJlaXO5lXlRmoLYvJClYCBpjzAODBSRoPgQPZzvdt59HiBEvXMH3_aVmuYsywWjhPVUeqasdyF4qHTn-9f8j6ZEHyXqk0R9lKh7ifwXad9j6A</recordid><startdate>20160921</startdate><enddate>20160921</enddate><creator>Eichelsbacher, Peter</creator><creator>Kriecherbauer, Thomas</creator><creator>Schüler, Katharina</creator><general>National Academy of Sciences of Ukraine</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20160921</creationdate><title>Precise Deviations Results for the Maxima of Some Determinantal Point Processes: the Upper Tail</title><author>Eichelsbacher, Peter ; Kriecherbauer, Thomas ; Schüler, Katharina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2223-5bc3129536e6d77a3f7532f2d577bbc86d689ba90c896b52e613f723e2e706e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eichelsbacher, Peter</creatorcontrib><creatorcontrib>Kriecherbauer, Thomas</creatorcontrib><creatorcontrib>Schüler, Katharina</creatorcontrib><creatorcontrib>Ruhr-Universit</creatorcontrib><creatorcontrib>Universität Bayreuth, Germany</creatorcontrib><creatorcontrib>228</creatorcontrib><creatorcontrib>t Bochum, Germany</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Symmetry, integrability and geometry, methods and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eichelsbacher, Peter</au><au>Kriecherbauer, Thomas</au><au>Schüler, Katharina</au><aucorp>Ruhr-Universit</aucorp><aucorp>Universität Bayreuth, Germany</aucorp><aucorp>228</aucorp><aucorp>t Bochum, Germany</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precise Deviations Results for the Maxima of Some Determinantal Point Processes: the Upper Tail</atitle><jtitle>Symmetry, integrability and geometry, methods and applications</jtitle><date>2016-09-21</date><risdate>2016</risdate><volume>12</volume><issn>1815-0659</issn><eissn>1815-0659</eissn><abstract>We prove precise deviations results in the sense of Cramér and Petrov for the upper tail of the distribution of the maximal value for a special class of determinantal point processes that play an important role in random matrix theory. Here we cover all three regimes of moderate, large and superlarge deviations for which we determine the leading order description of the tail probabilities. As a corollary of our results we identify the region within the regime of moderate deviations for which the limiting Tracy-Widom law still predicts the correct leading order behavior. Our proofs use that the determinantal point process is given by the Christoffel-Darboux kernel for an associated family of orthogonal polynomials. The necessary asymptotic information on this kernel has mostly been obtained in [Kriecherbauer T., Schubert K., Schüler K., Venker M., Markov Process. Related Fields 21 (2015), 639-694]. In the superlarge regime these results of do not suffice and we put stronger assumptions on the point processes. The results of the present paper and the relevant parts of [Kriecherbauer T., Schubert K., Schüler K., Venker M., Markov Process. Related Fields 21 (2015), 639-694] have been proved in the dissertation [Schüler K., Ph.D. Thesis, Universität Bayreuth, 2015]. [ProQuest: [...] denotes formulae omitted.]</abstract><cop>Kiev</cop><pub>National Academy of Sciences of Ukraine</pub><doi>10.3842/SIGMA.2016.093</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1815-0659 |
ispartof | Symmetry, integrability and geometry, methods and applications, 2016-09, Vol.12 |
issn | 1815-0659 1815-0659 |
language | eng |
recordid | cdi_proquest_journals_1824852102 |
source | Math-Net.Ru (free access); EZB-FREE-00999 freely available EZB journals |
title | Precise Deviations Results for the Maxima of Some Determinantal Point Processes: the Upper Tail |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A24%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precise%20Deviations%20Results%20for%20the%20Maxima%20of%20Some%20Determinantal%20Point%20Processes:%20the%20Upper%20Tail&rft.jtitle=Symmetry,%20integrability%20and%20geometry,%20methods%20and%20applications&rft.au=Eichelsbacher,%20Peter&rft.aucorp=Ruhr-Universit&rft.date=2016-09-21&rft.volume=12&rft.issn=1815-0659&rft.eissn=1815-0659&rft_id=info:doi/10.3842/SIGMA.2016.093&rft_dat=%3Cproquest_cross%3E4200362491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1824852102&rft_id=info:pmid/&rfr_iscdi=true |