Relevant states and memory in Markov chain bootstrapping and simulation

•A new optimization-based technique for bootstrapping and simulating Markov chains is proposed.•The relevant states and memory of a Markov chain are identified as minimum information loss solution.•Numerical applications are provided to validate the theoretical results. Markov chain theory is provin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 2017-01, Vol.256 (1), p.163-177
Hauptverfasser: Cerqueti, Roy, Falbo, Paolo, Pelizzari, Cristian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 177
container_issue 1
container_start_page 163
container_title European journal of operational research
container_volume 256
creator Cerqueti, Roy
Falbo, Paolo
Pelizzari, Cristian
description •A new optimization-based technique for bootstrapping and simulating Markov chains is proposed.•The relevant states and memory of a Markov chain are identified as minimum information loss solution.•Numerical applications are provided to validate the theoretical results. Markov chain theory is proving to be a powerful approach to bootstrap and simulate highly nonlinear time series. In this work, we provide a method to estimate the memory of a Markov chain (i.e. its order) and to identify its relevant states. In particular, the choice of memory lags and the aggregation of irrelevant states are obtained by looking for regularities in the transition probabilities. Our approach is based on an optimization model. More specifically, we consider two competing objectives that a researcher will in general pursue when dealing with bootstrapping and simulation: preserving the “structural” similarity between the original and the resampled series, and assuring a controlled diversification of the latter. A discussion based on information theory is developed to define the desirable properties for such optimal criteria. Two numerical tests are developed to verify the effectiveness of the proposed method.
doi_str_mv 10.1016/j.ejor.2016.06.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1821071275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037722171630426X</els_id><sourcerecordid>4187237821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-2efd10de0201f0b96f47006555472a9ad0a60a3039569725a99a490cad0756463</originalsourceid><addsrcrecordid>eNp9UMFKxDAQDaLguvoDngqeWydpk7TgRRZdhRVB9Bxm21RTt01Nsgv795u6noWBmWHee_N4hFxTyChQcdtlurMuY3HOIBaIEzKjpWSpKAWckhnkUqaMUXlOLrzvAIByymdk-aY3eodDSHzAoH2CQ5P0urdun5gheUH3bXdJ_YVxWVsbfHA4jmb4_AV60283GIwdLslZixuvr_76nHw8PrwvntLV6_J5cb9K66IoQ8p021BoNESnLawr0RYymuWcF5JhhQ2gAMwhr7ioJONYVVhUUMeD5KIQ-ZzcHHVHZ3-22gfV2a0b4ktFS0ZBUiZ5RLEjqnbWe6dbNTrTo9srCmoKTHVqCkxNgSmIBZP03ZGko_-d0U752uih1o1xug6qseY_-gGT-HMJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1821071275</pqid></control><display><type>article</type><title>Relevant states and memory in Markov chain bootstrapping and simulation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Cerqueti, Roy ; Falbo, Paolo ; Pelizzari, Cristian</creator><creatorcontrib>Cerqueti, Roy ; Falbo, Paolo ; Pelizzari, Cristian</creatorcontrib><description>•A new optimization-based technique for bootstrapping and simulating Markov chains is proposed.•The relevant states and memory of a Markov chain are identified as minimum information loss solution.•Numerical applications are provided to validate the theoretical results. Markov chain theory is proving to be a powerful approach to bootstrap and simulate highly nonlinear time series. In this work, we provide a method to estimate the memory of a Markov chain (i.e. its order) and to identify its relevant states. In particular, the choice of memory lags and the aggregation of irrelevant states are obtained by looking for regularities in the transition probabilities. Our approach is based on an optimization model. More specifically, we consider two competing objectives that a researcher will in general pursue when dealing with bootstrapping and simulation: preserving the “structural” similarity between the original and the resampled series, and assuring a controlled diversification of the latter. A discussion based on information theory is developed to define the desirable properties for such optimal criteria. Two numerical tests are developed to verify the effectiveness of the proposed method.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2016.06.006</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bootstrap method ; Bootstrapping ; Decision making models ; Information theory ; Markov analysis ; Markov chains ; Optimization ; Simulation ; Studies ; Time series</subject><ispartof>European journal of operational research, 2017-01, Vol.256 (1), p.163-177</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jan 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-2efd10de0201f0b96f47006555472a9ad0a60a3039569725a99a490cad0756463</citedby><cites>FETCH-LOGICAL-c448t-2efd10de0201f0b96f47006555472a9ad0a60a3039569725a99a490cad0756463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejor.2016.06.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Cerqueti, Roy</creatorcontrib><creatorcontrib>Falbo, Paolo</creatorcontrib><creatorcontrib>Pelizzari, Cristian</creatorcontrib><title>Relevant states and memory in Markov chain bootstrapping and simulation</title><title>European journal of operational research</title><description>•A new optimization-based technique for bootstrapping and simulating Markov chains is proposed.•The relevant states and memory of a Markov chain are identified as minimum information loss solution.•Numerical applications are provided to validate the theoretical results. Markov chain theory is proving to be a powerful approach to bootstrap and simulate highly nonlinear time series. In this work, we provide a method to estimate the memory of a Markov chain (i.e. its order) and to identify its relevant states. In particular, the choice of memory lags and the aggregation of irrelevant states are obtained by looking for regularities in the transition probabilities. Our approach is based on an optimization model. More specifically, we consider two competing objectives that a researcher will in general pursue when dealing with bootstrapping and simulation: preserving the “structural” similarity between the original and the resampled series, and assuring a controlled diversification of the latter. A discussion based on information theory is developed to define the desirable properties for such optimal criteria. Two numerical tests are developed to verify the effectiveness of the proposed method.</description><subject>Bootstrap method</subject><subject>Bootstrapping</subject><subject>Decision making models</subject><subject>Information theory</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Optimization</subject><subject>Simulation</subject><subject>Studies</subject><subject>Time series</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKxDAQDaLguvoDngqeWydpk7TgRRZdhRVB9Bxm21RTt01Nsgv795u6noWBmWHee_N4hFxTyChQcdtlurMuY3HOIBaIEzKjpWSpKAWckhnkUqaMUXlOLrzvAIByymdk-aY3eodDSHzAoH2CQ5P0urdun5gheUH3bXdJ_YVxWVsbfHA4jmb4_AV60283GIwdLslZixuvr_76nHw8PrwvntLV6_J5cb9K66IoQ8p021BoNESnLawr0RYymuWcF5JhhQ2gAMwhr7ioJONYVVhUUMeD5KIQ-ZzcHHVHZ3-22gfV2a0b4ktFS0ZBUiZ5RLEjqnbWe6dbNTrTo9srCmoKTHVqCkxNgSmIBZP03ZGko_-d0U752uih1o1xug6qseY_-gGT-HMJ</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Cerqueti, Roy</creator><creator>Falbo, Paolo</creator><creator>Pelizzari, Cristian</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170101</creationdate><title>Relevant states and memory in Markov chain bootstrapping and simulation</title><author>Cerqueti, Roy ; Falbo, Paolo ; Pelizzari, Cristian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-2efd10de0201f0b96f47006555472a9ad0a60a3039569725a99a490cad0756463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bootstrap method</topic><topic>Bootstrapping</topic><topic>Decision making models</topic><topic>Information theory</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Optimization</topic><topic>Simulation</topic><topic>Studies</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cerqueti, Roy</creatorcontrib><creatorcontrib>Falbo, Paolo</creatorcontrib><creatorcontrib>Pelizzari, Cristian</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cerqueti, Roy</au><au>Falbo, Paolo</au><au>Pelizzari, Cristian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relevant states and memory in Markov chain bootstrapping and simulation</atitle><jtitle>European journal of operational research</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>256</volume><issue>1</issue><spage>163</spage><epage>177</epage><pages>163-177</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>•A new optimization-based technique for bootstrapping and simulating Markov chains is proposed.•The relevant states and memory of a Markov chain are identified as minimum information loss solution.•Numerical applications are provided to validate the theoretical results. Markov chain theory is proving to be a powerful approach to bootstrap and simulate highly nonlinear time series. In this work, we provide a method to estimate the memory of a Markov chain (i.e. its order) and to identify its relevant states. In particular, the choice of memory lags and the aggregation of irrelevant states are obtained by looking for regularities in the transition probabilities. Our approach is based on an optimization model. More specifically, we consider two competing objectives that a researcher will in general pursue when dealing with bootstrapping and simulation: preserving the “structural” similarity between the original and the resampled series, and assuring a controlled diversification of the latter. A discussion based on information theory is developed to define the desirable properties for such optimal criteria. Two numerical tests are developed to verify the effectiveness of the proposed method.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2016.06.006</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2017-01, Vol.256 (1), p.163-177
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_journals_1821071275
source Elsevier ScienceDirect Journals Complete
subjects Bootstrap method
Bootstrapping
Decision making models
Information theory
Markov analysis
Markov chains
Optimization
Simulation
Studies
Time series
title Relevant states and memory in Markov chain bootstrapping and simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A19%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relevant%20states%20and%20memory%20in%20Markov%20chain%20bootstrapping%20and%20simulation&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Cerqueti,%20Roy&rft.date=2017-01-01&rft.volume=256&rft.issue=1&rft.spage=163&rft.epage=177&rft.pages=163-177&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2016.06.006&rft_dat=%3Cproquest_cross%3E4187237821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1821071275&rft_id=info:pmid/&rft_els_id=S037722171630426X&rfr_iscdi=true