Relevant states and memory in Markov chain bootstrapping and simulation
•A new optimization-based technique for bootstrapping and simulating Markov chains is proposed.•The relevant states and memory of a Markov chain are identified as minimum information loss solution.•Numerical applications are provided to validate the theoretical results. Markov chain theory is provin...
Gespeichert in:
Veröffentlicht in: | European journal of operational research 2017-01, Vol.256 (1), p.163-177 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 177 |
---|---|
container_issue | 1 |
container_start_page | 163 |
container_title | European journal of operational research |
container_volume | 256 |
creator | Cerqueti, Roy Falbo, Paolo Pelizzari, Cristian |
description | •A new optimization-based technique for bootstrapping and simulating Markov chains is proposed.•The relevant states and memory of a Markov chain are identified as minimum information loss solution.•Numerical applications are provided to validate the theoretical results.
Markov chain theory is proving to be a powerful approach to bootstrap and simulate highly nonlinear time series. In this work, we provide a method to estimate the memory of a Markov chain (i.e. its order) and to identify its relevant states. In particular, the choice of memory lags and the aggregation of irrelevant states are obtained by looking for regularities in the transition probabilities. Our approach is based on an optimization model. More specifically, we consider two competing objectives that a researcher will in general pursue when dealing with bootstrapping and simulation: preserving the “structural” similarity between the original and the resampled series, and assuring a controlled diversification of the latter. A discussion based on information theory is developed to define the desirable properties for such optimal criteria. Two numerical tests are developed to verify the effectiveness of the proposed method. |
doi_str_mv | 10.1016/j.ejor.2016.06.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1821071275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037722171630426X</els_id><sourcerecordid>4187237821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-2efd10de0201f0b96f47006555472a9ad0a60a3039569725a99a490cad0756463</originalsourceid><addsrcrecordid>eNp9UMFKxDAQDaLguvoDngqeWydpk7TgRRZdhRVB9Bxm21RTt01Nsgv795u6noWBmWHee_N4hFxTyChQcdtlurMuY3HOIBaIEzKjpWSpKAWckhnkUqaMUXlOLrzvAIByymdk-aY3eodDSHzAoH2CQ5P0urdun5gheUH3bXdJ_YVxWVsbfHA4jmb4_AV60283GIwdLslZixuvr_76nHw8PrwvntLV6_J5cb9K66IoQ8p021BoNESnLawr0RYymuWcF5JhhQ2gAMwhr7ioJONYVVhUUMeD5KIQ-ZzcHHVHZ3-22gfV2a0b4ktFS0ZBUiZ5RLEjqnbWe6dbNTrTo9srCmoKTHVqCkxNgSmIBZP03ZGko_-d0U752uih1o1xug6qseY_-gGT-HMJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1821071275</pqid></control><display><type>article</type><title>Relevant states and memory in Markov chain bootstrapping and simulation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Cerqueti, Roy ; Falbo, Paolo ; Pelizzari, Cristian</creator><creatorcontrib>Cerqueti, Roy ; Falbo, Paolo ; Pelizzari, Cristian</creatorcontrib><description>•A new optimization-based technique for bootstrapping and simulating Markov chains is proposed.•The relevant states and memory of a Markov chain are identified as minimum information loss solution.•Numerical applications are provided to validate the theoretical results.
Markov chain theory is proving to be a powerful approach to bootstrap and simulate highly nonlinear time series. In this work, we provide a method to estimate the memory of a Markov chain (i.e. its order) and to identify its relevant states. In particular, the choice of memory lags and the aggregation of irrelevant states are obtained by looking for regularities in the transition probabilities. Our approach is based on an optimization model. More specifically, we consider two competing objectives that a researcher will in general pursue when dealing with bootstrapping and simulation: preserving the “structural” similarity between the original and the resampled series, and assuring a controlled diversification of the latter. A discussion based on information theory is developed to define the desirable properties for such optimal criteria. Two numerical tests are developed to verify the effectiveness of the proposed method.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2016.06.006</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bootstrap method ; Bootstrapping ; Decision making models ; Information theory ; Markov analysis ; Markov chains ; Optimization ; Simulation ; Studies ; Time series</subject><ispartof>European journal of operational research, 2017-01, Vol.256 (1), p.163-177</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jan 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-2efd10de0201f0b96f47006555472a9ad0a60a3039569725a99a490cad0756463</citedby><cites>FETCH-LOGICAL-c448t-2efd10de0201f0b96f47006555472a9ad0a60a3039569725a99a490cad0756463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejor.2016.06.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Cerqueti, Roy</creatorcontrib><creatorcontrib>Falbo, Paolo</creatorcontrib><creatorcontrib>Pelizzari, Cristian</creatorcontrib><title>Relevant states and memory in Markov chain bootstrapping and simulation</title><title>European journal of operational research</title><description>•A new optimization-based technique for bootstrapping and simulating Markov chains is proposed.•The relevant states and memory of a Markov chain are identified as minimum information loss solution.•Numerical applications are provided to validate the theoretical results.
Markov chain theory is proving to be a powerful approach to bootstrap and simulate highly nonlinear time series. In this work, we provide a method to estimate the memory of a Markov chain (i.e. its order) and to identify its relevant states. In particular, the choice of memory lags and the aggregation of irrelevant states are obtained by looking for regularities in the transition probabilities. Our approach is based on an optimization model. More specifically, we consider two competing objectives that a researcher will in general pursue when dealing with bootstrapping and simulation: preserving the “structural” similarity between the original and the resampled series, and assuring a controlled diversification of the latter. A discussion based on information theory is developed to define the desirable properties for such optimal criteria. Two numerical tests are developed to verify the effectiveness of the proposed method.</description><subject>Bootstrap method</subject><subject>Bootstrapping</subject><subject>Decision making models</subject><subject>Information theory</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Optimization</subject><subject>Simulation</subject><subject>Studies</subject><subject>Time series</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKxDAQDaLguvoDngqeWydpk7TgRRZdhRVB9Bxm21RTt01Nsgv795u6noWBmWHee_N4hFxTyChQcdtlurMuY3HOIBaIEzKjpWSpKAWckhnkUqaMUXlOLrzvAIByymdk-aY3eodDSHzAoH2CQ5P0urdun5gheUH3bXdJ_YVxWVsbfHA4jmb4_AV60283GIwdLslZixuvr_76nHw8PrwvntLV6_J5cb9K66IoQ8p021BoNESnLawr0RYymuWcF5JhhQ2gAMwhr7ioJONYVVhUUMeD5KIQ-ZzcHHVHZ3-22gfV2a0b4ktFS0ZBUiZ5RLEjqnbWe6dbNTrTo9srCmoKTHVqCkxNgSmIBZP03ZGko_-d0U752uih1o1xug6qseY_-gGT-HMJ</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Cerqueti, Roy</creator><creator>Falbo, Paolo</creator><creator>Pelizzari, Cristian</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170101</creationdate><title>Relevant states and memory in Markov chain bootstrapping and simulation</title><author>Cerqueti, Roy ; Falbo, Paolo ; Pelizzari, Cristian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-2efd10de0201f0b96f47006555472a9ad0a60a3039569725a99a490cad0756463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bootstrap method</topic><topic>Bootstrapping</topic><topic>Decision making models</topic><topic>Information theory</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Optimization</topic><topic>Simulation</topic><topic>Studies</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cerqueti, Roy</creatorcontrib><creatorcontrib>Falbo, Paolo</creatorcontrib><creatorcontrib>Pelizzari, Cristian</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cerqueti, Roy</au><au>Falbo, Paolo</au><au>Pelizzari, Cristian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relevant states and memory in Markov chain bootstrapping and simulation</atitle><jtitle>European journal of operational research</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>256</volume><issue>1</issue><spage>163</spage><epage>177</epage><pages>163-177</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>•A new optimization-based technique for bootstrapping and simulating Markov chains is proposed.•The relevant states and memory of a Markov chain are identified as minimum information loss solution.•Numerical applications are provided to validate the theoretical results.
Markov chain theory is proving to be a powerful approach to bootstrap and simulate highly nonlinear time series. In this work, we provide a method to estimate the memory of a Markov chain (i.e. its order) and to identify its relevant states. In particular, the choice of memory lags and the aggregation of irrelevant states are obtained by looking for regularities in the transition probabilities. Our approach is based on an optimization model. More specifically, we consider two competing objectives that a researcher will in general pursue when dealing with bootstrapping and simulation: preserving the “structural” similarity between the original and the resampled series, and assuring a controlled diversification of the latter. A discussion based on information theory is developed to define the desirable properties for such optimal criteria. Two numerical tests are developed to verify the effectiveness of the proposed method.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2016.06.006</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-2217 |
ispartof | European journal of operational research, 2017-01, Vol.256 (1), p.163-177 |
issn | 0377-2217 1872-6860 |
language | eng |
recordid | cdi_proquest_journals_1821071275 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Bootstrap method Bootstrapping Decision making models Information theory Markov analysis Markov chains Optimization Simulation Studies Time series |
title | Relevant states and memory in Markov chain bootstrapping and simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A19%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relevant%20states%20and%20memory%20in%20Markov%20chain%20bootstrapping%20and%20simulation&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Cerqueti,%20Roy&rft.date=2017-01-01&rft.volume=256&rft.issue=1&rft.spage=163&rft.epage=177&rft.pages=163-177&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2016.06.006&rft_dat=%3Cproquest_cross%3E4187237821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1821071275&rft_id=info:pmid/&rft_els_id=S037722171630426X&rfr_iscdi=true |