Univariate Conditional Distributions of an Open-Loop TAR Stochastic Process

Clusters of large values are observed in sample paths of certain open-loop threshold autoregressive (TAR) stochastic processes. In order to characterize the stochastic mechanism that generates this empirical stylized fact, three types of marginal conditional distributions of the underlying stochasti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista Colombiana de Estadística 2016-07, Vol.39 (2), p.149-165
Hauptverfasser: Nieto, Fabio, Moreno, Edna C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 165
container_issue 2
container_start_page 149
container_title Revista Colombiana de Estadística
container_volume 39
creator Nieto, Fabio
Moreno, Edna C.
description Clusters of large values are observed in sample paths of certain open-loop threshold autoregressive (TAR) stochastic processes. In order to characterize the stochastic mechanism that generates this empirical stylized fact, three types of marginal conditional distributions of the underlying stochastic process are analyzed in this paper. One allows us to find the conditional variance function that explains the aforementioned stylized fact. As a by-product, we are able to derive a sufficient condition to have asymptotic weak stationarity in an open-loop TAR stochastic process.
doi_str_mv 10.15446/rce.v39n2.58912
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_1818048085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d6f7fc16cc59469388dfc5c3faac41e0</doaj_id><sourcerecordid>4176847741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3662-9b4deb4e88df3afc6f6a5d0f6f4b3d949e56c2e4e034e43619e62eb71f2efd2a3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3jwHPW_O12eRY6lexUNH2HLLZiabUTU22Bf-961Y8DTO8vM_wIHRNyYSWQsjb5GBy4Lplk1Jpyk7QiHGlC6UreYpGhDJS0Kqk5-gi5w0hUklGR-h53YaDTcF2gGexbUIXYmu3-C7kLoV6_7tmHD22LV7uoC0WMe7wavqK37roPmzugsMvKTrI-RKdebvNcPU3x2j9cL-aPRWL5eN8Nl0UjkvJCl2LBmoBSjWeW--kl7ZsiJde1LzRQkMpHQMBhAsQXFINkkFdUc_AN8zyMZofe5toN2aXwqdN3ybaYIZDTO_Gpv6vLZhG-so7Kp0rtZCa_zJd6bi31gnaE8bo5ti1S_FrD7kzm7hPvYFsqKKKCEVU2afIMeVSzDmB_6dSYgb9ptdvBv1m0M9_ACrfeis</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1818048085</pqid></control><display><type>article</type><title>Univariate Conditional Distributions of an Open-Loop TAR Stochastic Process</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nieto, Fabio ; Moreno, Edna C.</creator><creatorcontrib>Nieto, Fabio ; Moreno, Edna C.</creatorcontrib><description>Clusters of large values are observed in sample paths of certain open-loop threshold autoregressive (TAR) stochastic processes. In order to characterize the stochastic mechanism that generates this empirical stylized fact, three types of marginal conditional distributions of the underlying stochastic process are analyzed in this paper. One allows us to find the conditional variance function that explains the aforementioned stylized fact. As a by-product, we are able to derive a sufficient condition to have asymptotic weak stationarity in an open-loop TAR stochastic process.</description><identifier>ISSN: 0120-1751</identifier><identifier>EISSN: 2389-8976</identifier><identifier>DOI: 10.15446/rce.v39n2.58912</identifier><language>eng</language><publisher>Bogota: Universidad Nacional de Colombia</publisher><subject>Conditional heteroscedasticity ; Datasets ; Nonlinear stochastic process ; Nonlinear systems ; Open-loop TAR model ; Stationary nonlinear stochastic process ; Stochastic models</subject><ispartof>Revista Colombiana de Estadística, 2016-07, Vol.39 (2), p.149-165</ispartof><rights>Copyright Universidad Nacional de Colombia 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3662-9b4deb4e88df3afc6f6a5d0f6f4b3d949e56c2e4e034e43619e62eb71f2efd2a3</citedby><cites>FETCH-LOGICAL-c3662-9b4deb4e88df3afc6f6a5d0f6f4b3d949e56c2e4e034e43619e62eb71f2efd2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27923,27924</link.rule.ids></links><search><creatorcontrib>Nieto, Fabio</creatorcontrib><creatorcontrib>Moreno, Edna C.</creatorcontrib><title>Univariate Conditional Distributions of an Open-Loop TAR Stochastic Process</title><title>Revista Colombiana de Estadística</title><description>Clusters of large values are observed in sample paths of certain open-loop threshold autoregressive (TAR) stochastic processes. In order to characterize the stochastic mechanism that generates this empirical stylized fact, three types of marginal conditional distributions of the underlying stochastic process are analyzed in this paper. One allows us to find the conditional variance function that explains the aforementioned stylized fact. As a by-product, we are able to derive a sufficient condition to have asymptotic weak stationarity in an open-loop TAR stochastic process.</description><subject>Conditional heteroscedasticity</subject><subject>Datasets</subject><subject>Nonlinear stochastic process</subject><subject>Nonlinear systems</subject><subject>Open-loop TAR model</subject><subject>Stationary nonlinear stochastic process</subject><subject>Stochastic models</subject><issn>0120-1751</issn><issn>2389-8976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3jwHPW_O12eRY6lexUNH2HLLZiabUTU22Bf-961Y8DTO8vM_wIHRNyYSWQsjb5GBy4Lplk1Jpyk7QiHGlC6UreYpGhDJS0Kqk5-gi5w0hUklGR-h53YaDTcF2gGexbUIXYmu3-C7kLoV6_7tmHD22LV7uoC0WMe7wavqK37roPmzugsMvKTrI-RKdebvNcPU3x2j9cL-aPRWL5eN8Nl0UjkvJCl2LBmoBSjWeW--kl7ZsiJde1LzRQkMpHQMBhAsQXFINkkFdUc_AN8zyMZofe5toN2aXwqdN3ybaYIZDTO_Gpv6vLZhG-so7Kp0rtZCa_zJd6bi31gnaE8bo5ti1S_FrD7kzm7hPvYFsqKKKCEVU2afIMeVSzDmB_6dSYgb9ptdvBv1m0M9_ACrfeis</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Nieto, Fabio</creator><creator>Moreno, Edna C.</creator><general>Universidad Nacional de Colombia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20160701</creationdate><title>Univariate Conditional Distributions of an Open-Loop TAR Stochastic Process</title><author>Nieto, Fabio ; Moreno, Edna C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3662-9b4deb4e88df3afc6f6a5d0f6f4b3d949e56c2e4e034e43619e62eb71f2efd2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Conditional heteroscedasticity</topic><topic>Datasets</topic><topic>Nonlinear stochastic process</topic><topic>Nonlinear systems</topic><topic>Open-loop TAR model</topic><topic>Stationary nonlinear stochastic process</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nieto, Fabio</creatorcontrib><creatorcontrib>Moreno, Edna C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Latin America &amp; Iberia Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Revista Colombiana de Estadística</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nieto, Fabio</au><au>Moreno, Edna C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Univariate Conditional Distributions of an Open-Loop TAR Stochastic Process</atitle><jtitle>Revista Colombiana de Estadística</jtitle><date>2016-07-01</date><risdate>2016</risdate><volume>39</volume><issue>2</issue><spage>149</spage><epage>165</epage><pages>149-165</pages><issn>0120-1751</issn><eissn>2389-8976</eissn><abstract>Clusters of large values are observed in sample paths of certain open-loop threshold autoregressive (TAR) stochastic processes. In order to characterize the stochastic mechanism that generates this empirical stylized fact, three types of marginal conditional distributions of the underlying stochastic process are analyzed in this paper. One allows us to find the conditional variance function that explains the aforementioned stylized fact. As a by-product, we are able to derive a sufficient condition to have asymptotic weak stationarity in an open-loop TAR stochastic process.</abstract><cop>Bogota</cop><pub>Universidad Nacional de Colombia</pub><doi>10.15446/rce.v39n2.58912</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0120-1751
ispartof Revista Colombiana de Estadística, 2016-07, Vol.39 (2), p.149-165
issn 0120-1751
2389-8976
language eng
recordid cdi_proquest_journals_1818048085
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Conditional heteroscedasticity
Datasets
Nonlinear stochastic process
Nonlinear systems
Open-loop TAR model
Stationary nonlinear stochastic process
Stochastic models
title Univariate Conditional Distributions of an Open-Loop TAR Stochastic Process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A23%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Univariate%20Conditional%20Distributions%20of%20an%20Open-Loop%20TAR%20Stochastic%20Process&rft.jtitle=Revista%20Colombiana%20de%20Estad%C3%ADstica&rft.au=Nieto,%20Fabio&rft.date=2016-07-01&rft.volume=39&rft.issue=2&rft.spage=149&rft.epage=165&rft.pages=149-165&rft.issn=0120-1751&rft.eissn=2389-8976&rft_id=info:doi/10.15446/rce.v39n2.58912&rft_dat=%3Cproquest_doaj_%3E4176847741%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1818048085&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_d6f7fc16cc59469388dfc5c3faac41e0&rfr_iscdi=true