CLIMATE PRECIPITATION PREDICTION FOR SOUTH REGION BY NEURAL NETWORK SELF-CONFIGURED

Climate prediction for precipitation field is a key issue, because such meteorological variable is the challenge for climate and weather forecasting due to the high spatial and temporal variability with strong impact on the society. A method based on the artificial neural network is applied to month...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ciência e natura 2016-01, Vol.38 (IX WORKSHOP), p.98
Hauptverfasser: Juliana Aparecida Anochi, Haroldo Fraga de Campos Velho
Format: Artikel
Sprache:por
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue IX WORKSHOP
container_start_page 98
container_title Ciência e natura
container_volume 38
creator Juliana Aparecida Anochi
Haroldo Fraga de Campos Velho
description Climate prediction for precipitation field is a key issue, because such meteorological variable is the challenge for climate and weather forecasting due to the high spatial and temporal variability with strong impact on the society. A method based on the artificial neural network is applied to monthly and seasonal precipitation forecast in southern Brazil. The use of neural networks as a predictive model is widespread in different applications. The best configuration for the neural network is automatically calculated. The autoconfiguration scheme is described as an optimization problem.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1817335113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4172867631</sourcerecordid><originalsourceid>FETCH-proquest_journals_18173351133</originalsourceid><addsrcrecordid>eNqNS80KgjAAHlGQlO8w6CxsrpwdbW06MidzUp2kgx0ksly-fxo9QN_l-58Ax8d0660DdJ4CB2GEvJAgOgeutQ0aEPgBxcQBBUvlMTIc5pozmUsTGamy0e0l-0qhNCxUaRKoeTwGuwvMeKmjdCBzUvoAC54Kj6lMyLgcjkswu13vtnZ_vAArwQ1LvGfXvvravqum7bvHUFU4xJSQDcaE_Lf6AKf9OgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1817335113</pqid></control><display><type>article</type><title>CLIMATE PRECIPITATION PREDICTION FOR SOUTH REGION BY NEURAL NETWORK SELF-CONFIGURED</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Juliana Aparecida Anochi ; Haroldo Fraga de Campos Velho</creator><creatorcontrib>Juliana Aparecida Anochi ; Haroldo Fraga de Campos Velho</creatorcontrib><description>Climate prediction for precipitation field is a key issue, because such meteorological variable is the challenge for climate and weather forecasting due to the high spatial and temporal variability with strong impact on the society. A method based on the artificial neural network is applied to monthly and seasonal precipitation forecast in southern Brazil. The use of neural networks as a predictive model is widespread in different applications. The best configuration for the neural network is automatically calculated. The autoconfiguration scheme is described as an optimization problem.</description><identifier>ISSN: 0100-8307</identifier><identifier>EISSN: 2179-460X</identifier><language>por</language><publisher>Santa Maria: Universidade Federal de Santa Maria - Centro de Ciências Naturais e Exatas</publisher><ispartof>Ciência e natura, 2016-01, Vol.38 (IX WORKSHOP), p.98</ispartof><rights>Copyright Universidade Federal de Santa Maria - Centro de Ciências Naturais e Exatas 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Juliana Aparecida Anochi</creatorcontrib><creatorcontrib>Haroldo Fraga de Campos Velho</creatorcontrib><title>CLIMATE PRECIPITATION PREDICTION FOR SOUTH REGION BY NEURAL NETWORK SELF-CONFIGURED</title><title>Ciência e natura</title><description>Climate prediction for precipitation field is a key issue, because such meteorological variable is the challenge for climate and weather forecasting due to the high spatial and temporal variability with strong impact on the society. A method based on the artificial neural network is applied to monthly and seasonal precipitation forecast in southern Brazil. The use of neural networks as a predictive model is widespread in different applications. The best configuration for the neural network is automatically calculated. The autoconfiguration scheme is described as an optimization problem.</description><issn>0100-8307</issn><issn>2179-460X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNS80KgjAAHlGQlO8w6CxsrpwdbW06MidzUp2kgx0ksly-fxo9QN_l-58Ax8d0660DdJ4CB2GEvJAgOgeutQ0aEPgBxcQBBUvlMTIc5pozmUsTGamy0e0l-0qhNCxUaRKoeTwGuwvMeKmjdCBzUvoAC54Kj6lMyLgcjkswu13vtnZ_vAArwQ1LvGfXvvravqum7bvHUFU4xJSQDcaE_Lf6AKf9OgA</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Juliana Aparecida Anochi</creator><creator>Haroldo Fraga de Campos Velho</creator><general>Universidade Federal de Santa Maria - Centro de Ciências Naturais e Exatas</general><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope></search><sort><creationdate>20160101</creationdate><title>CLIMATE PRECIPITATION PREDICTION FOR SOUTH REGION BY NEURAL NETWORK SELF-CONFIGURED</title><author>Juliana Aparecida Anochi ; Haroldo Fraga de Campos Velho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_18173351133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>por</language><creationdate>2016</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Juliana Aparecida Anochi</creatorcontrib><creatorcontrib>Haroldo Fraga de Campos Velho</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>Latin America &amp; Iberia Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><jtitle>Ciência e natura</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Juliana Aparecida Anochi</au><au>Haroldo Fraga de Campos Velho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CLIMATE PRECIPITATION PREDICTION FOR SOUTH REGION BY NEURAL NETWORK SELF-CONFIGURED</atitle><jtitle>Ciência e natura</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>38</volume><issue>IX WORKSHOP</issue><spage>98</spage><pages>98-</pages><issn>0100-8307</issn><eissn>2179-460X</eissn><abstract>Climate prediction for precipitation field is a key issue, because such meteorological variable is the challenge for climate and weather forecasting due to the high spatial and temporal variability with strong impact on the society. A method based on the artificial neural network is applied to monthly and seasonal precipitation forecast in southern Brazil. The use of neural networks as a predictive model is widespread in different applications. The best configuration for the neural network is automatically calculated. The autoconfiguration scheme is described as an optimization problem.</abstract><cop>Santa Maria</cop><pub>Universidade Federal de Santa Maria - Centro de Ciências Naturais e Exatas</pub></addata></record>
fulltext fulltext
identifier ISSN: 0100-8307
ispartof Ciência e natura, 2016-01, Vol.38 (IX WORKSHOP), p.98
issn 0100-8307
2179-460X
language por
recordid cdi_proquest_journals_1817335113
source EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title CLIMATE PRECIPITATION PREDICTION FOR SOUTH REGION BY NEURAL NETWORK SELF-CONFIGURED
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A21%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CLIMATE%20PRECIPITATION%20PREDICTION%20FOR%20SOUTH%20REGION%20BY%20NEURAL%20NETWORK%20SELF-CONFIGURED&rft.jtitle=Ci%C3%AAncia%20e%20natura&rft.au=Juliana%20Aparecida%20Anochi&rft.date=2016-01-01&rft.volume=38&rft.issue=IX%20WORKSHOP&rft.spage=98&rft.pages=98-&rft.issn=0100-8307&rft.eissn=2179-460X&rft_id=info:doi/&rft_dat=%3Cproquest%3E4172867631%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1817335113&rft_id=info:pmid/&rfr_iscdi=true