Mixture Modeling: Applications in Educational Psychology

Model-based clustering methods, commonly referred to as finite mixture modeling, have been applied to a wide variety of cross-sectional and longitudinal data to account for heterogeneity in population characteristics. In this article, we elucidate 2 such approaches: growth mixture modeling and laten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Educational psychologist 2016-10, Vol.51 (3-4), p.354-367
Hauptverfasser: Harring, Jeffrey R., Hodis, Flaviu A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Model-based clustering methods, commonly referred to as finite mixture modeling, have been applied to a wide variety of cross-sectional and longitudinal data to account for heterogeneity in population characteristics. In this article, we elucidate 2 such approaches: growth mixture modeling and latent profile analysis. Both techniques are illustrated using motivation data from 2 studies. General strategies for fitting these classes of mixture models are discussed, as are extensions to other applications.
ISSN:0046-1520
1532-6985
DOI:10.1080/00461520.2016.1207176