Application of Computational Thermodynamics to the Evolution of Surface Tension and Gibbs-Thomson Coefficient during Multicomponent Aluminum Alloy Solidification

Numerical simulation of multicomponent alloy solidification demands accuracy of thermophysical properties in order to obtain a numerical representation as close as possible to the physical reality. Some alloy properties are only seldom found in the literature. In this paper, a solution of Butler’s f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2016-08, Vol.869, p.416-422
Hauptverfasser: Jácome, Paulo A.D., Ferreira, Alexandre F., de Castro, José Adilson, Fernandes, Marcio T., Garcia, Amauri, Ferreira, Ivaldo Leão
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 422
container_issue
container_start_page 416
container_title Materials science forum
container_volume 869
creator Jácome, Paulo A.D.
Ferreira, Alexandre F.
de Castro, José Adilson
Fernandes, Marcio T.
Garcia, Amauri
Ferreira, Ivaldo Leão
description Numerical simulation of multicomponent alloy solidification demands accuracy of thermophysical properties in order to obtain a numerical representation as close as possible to the physical reality. Some alloy properties are only seldom found in the literature. In this paper, a solution of Butler’s formulation for surface tension is presented for Al-Cu-Si ternary alloys, allowing the Gibbs-Thomson coefficient to be calculated as a function of Cu and Si contents. The importance of the Gibbs-Thomson coefficient is related to the reliability of predictions furnished by predictive microstructure growth models and of numerical computations of solidification thermal variables that will be strongly dependent on the values of the thermophysical properties adopted in the calculations. A numerical model based on Powell hybrid algorithm and a finite difference Jacobian approximation was coupled with a ThermoCalc TCAPI interface to assess the excess Gibbs energy of the liquid phase, permitting the surface tension and Gibbs-Thomson coefficient for Al-Cu-Si hypoeutectic alloys to be calculated. The computed results are presented as a function of the alloy composition.
doi_str_mv 10.4028/www.scientific.net/MSF.869.416
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1816102041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4168265121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2716-db05f9b636a64e4895bde6b12f59ea9423d811fa4d37b76e3b9d64729d4bb8103</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS0EEkPhHSwhsUtqO46TbBCjUVuQWrGYYW35L4yrxA7-YTSP0zfF6YBgycr20fW5594PgA8Y1RSR_vp0OtVRWeOSHa2qnUnXD_vbumdDTTF7ATaYMVINXUtegg0ibVu1tGOvwZsYHxFqcI_ZBjxtl2WySiTrHfQj3Pl5yen5KSZ4OJowe312YrYqwuRhOhp489NP-c-HfQ6jUAYejIurJJyGd1bKWB2Ofo5F2XkzloBrUKhzsO47fMhTsqq08m5Vt1OerctzuUz-DPd-snqd6TnGW_BqFFM0736fV-Db7c1h97m6_3r3Zbe9rxTpMKu0RO04SNYwwaih_dBKbZjEZGwHIwZKGt1jPAqqm052zDRy0Ix2ZNBUyh6j5gq8v_guwf_IJib-6HMoW4h8XRVGBFFcqj5eqlTwMQYz8iXYWYQzx4ivWHjBwv9i4QULL1h4wcILlmLw6WKQgnAxGXX8p8__WfwCu0ijgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816102041</pqid></control><display><type>article</type><title>Application of Computational Thermodynamics to the Evolution of Surface Tension and Gibbs-Thomson Coefficient during Multicomponent Aluminum Alloy Solidification</title><source>ProQuest Central Essentials</source><source>ProQuest Central Student</source><source>ProQuest Central (Alumni)</source><source>Scientific.net Journals</source><creator>Jácome, Paulo A.D. ; Ferreira, Alexandre F. ; de Castro, José Adilson ; Fernandes, Marcio T. ; Garcia, Amauri ; Ferreira, Ivaldo Leão</creator><creatorcontrib>Jácome, Paulo A.D. ; Ferreira, Alexandre F. ; de Castro, José Adilson ; Fernandes, Marcio T. ; Garcia, Amauri ; Ferreira, Ivaldo Leão</creatorcontrib><description>Numerical simulation of multicomponent alloy solidification demands accuracy of thermophysical properties in order to obtain a numerical representation as close as possible to the physical reality. Some alloy properties are only seldom found in the literature. In this paper, a solution of Butler’s formulation for surface tension is presented for Al-Cu-Si ternary alloys, allowing the Gibbs-Thomson coefficient to be calculated as a function of Cu and Si contents. The importance of the Gibbs-Thomson coefficient is related to the reliability of predictions furnished by predictive microstructure growth models and of numerical computations of solidification thermal variables that will be strongly dependent on the values of the thermophysical properties adopted in the calculations. A numerical model based on Powell hybrid algorithm and a finite difference Jacobian approximation was coupled with a ThermoCalc TCAPI interface to assess the excess Gibbs energy of the liquid phase, permitting the surface tension and Gibbs-Thomson coefficient for Al-Cu-Si hypoeutectic alloys to be calculated. The computed results are presented as a function of the alloy composition.</description><identifier>ISSN: 0255-5476</identifier><identifier>ISSN: 1662-9752</identifier><identifier>EISSN: 1662-9752</identifier><identifier>DOI: 10.4028/www.scientific.net/MSF.869.416</identifier><language>eng</language><publisher>Pfaffikon: Trans Tech Publications Ltd</publisher><ispartof>Materials science forum, 2016-08, Vol.869, p.416-422</ispartof><rights>2016 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Aug 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2716-db05f9b636a64e4895bde6b12f59ea9423d811fa4d37b76e3b9d64729d4bb8103</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4101?width=600</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1816102041?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21389,21390,23256,27924,27925,33530,33703,34314,43659,43787,44067</link.rule.ids></links><search><creatorcontrib>Jácome, Paulo A.D.</creatorcontrib><creatorcontrib>Ferreira, Alexandre F.</creatorcontrib><creatorcontrib>de Castro, José Adilson</creatorcontrib><creatorcontrib>Fernandes, Marcio T.</creatorcontrib><creatorcontrib>Garcia, Amauri</creatorcontrib><creatorcontrib>Ferreira, Ivaldo Leão</creatorcontrib><title>Application of Computational Thermodynamics to the Evolution of Surface Tension and Gibbs-Thomson Coefficient during Multicomponent Aluminum Alloy Solidification</title><title>Materials science forum</title><description>Numerical simulation of multicomponent alloy solidification demands accuracy of thermophysical properties in order to obtain a numerical representation as close as possible to the physical reality. Some alloy properties are only seldom found in the literature. In this paper, a solution of Butler’s formulation for surface tension is presented for Al-Cu-Si ternary alloys, allowing the Gibbs-Thomson coefficient to be calculated as a function of Cu and Si contents. The importance of the Gibbs-Thomson coefficient is related to the reliability of predictions furnished by predictive microstructure growth models and of numerical computations of solidification thermal variables that will be strongly dependent on the values of the thermophysical properties adopted in the calculations. A numerical model based on Powell hybrid algorithm and a finite difference Jacobian approximation was coupled with a ThermoCalc TCAPI interface to assess the excess Gibbs energy of the liquid phase, permitting the surface tension and Gibbs-Thomson coefficient for Al-Cu-Si hypoeutectic alloys to be calculated. The computed results are presented as a function of the alloy composition.</description><issn>0255-5476</issn><issn>1662-9752</issn><issn>1662-9752</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkc1u1DAUhS0EEkPhHSwhsUtqO46TbBCjUVuQWrGYYW35L4yrxA7-YTSP0zfF6YBgycr20fW5594PgA8Y1RSR_vp0OtVRWeOSHa2qnUnXD_vbumdDTTF7ATaYMVINXUtegg0ibVu1tGOvwZsYHxFqcI_ZBjxtl2WySiTrHfQj3Pl5yen5KSZ4OJowe312YrYqwuRhOhp489NP-c-HfQ6jUAYejIurJJyGd1bKWB2Ofo5F2XkzloBrUKhzsO47fMhTsqq08m5Vt1OerctzuUz-DPd-snqd6TnGW_BqFFM0736fV-Db7c1h97m6_3r3Zbe9rxTpMKu0RO04SNYwwaih_dBKbZjEZGwHIwZKGt1jPAqqm052zDRy0Ix2ZNBUyh6j5gq8v_guwf_IJib-6HMoW4h8XRVGBFFcqj5eqlTwMQYz8iXYWYQzx4ivWHjBwv9i4QULL1h4wcILlmLw6WKQgnAxGXX8p8__WfwCu0ijgA</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Jácome, Paulo A.D.</creator><creator>Ferreira, Alexandre F.</creator><creator>de Castro, José Adilson</creator><creator>Fernandes, Marcio T.</creator><creator>Garcia, Amauri</creator><creator>Ferreira, Ivaldo Leão</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20160801</creationdate><title>Application of Computational Thermodynamics to the Evolution of Surface Tension and Gibbs-Thomson Coefficient during Multicomponent Aluminum Alloy Solidification</title><author>Jácome, Paulo A.D. ; Ferreira, Alexandre F. ; de Castro, José Adilson ; Fernandes, Marcio T. ; Garcia, Amauri ; Ferreira, Ivaldo Leão</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2716-db05f9b636a64e4895bde6b12f59ea9423d811fa4d37b76e3b9d64729d4bb8103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jácome, Paulo A.D.</creatorcontrib><creatorcontrib>Ferreira, Alexandre F.</creatorcontrib><creatorcontrib>de Castro, José Adilson</creatorcontrib><creatorcontrib>Fernandes, Marcio T.</creatorcontrib><creatorcontrib>Garcia, Amauri</creatorcontrib><creatorcontrib>Ferreira, Ivaldo Leão</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Materials science forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jácome, Paulo A.D.</au><au>Ferreira, Alexandre F.</au><au>de Castro, José Adilson</au><au>Fernandes, Marcio T.</au><au>Garcia, Amauri</au><au>Ferreira, Ivaldo Leão</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Computational Thermodynamics to the Evolution of Surface Tension and Gibbs-Thomson Coefficient during Multicomponent Aluminum Alloy Solidification</atitle><jtitle>Materials science forum</jtitle><date>2016-08-01</date><risdate>2016</risdate><volume>869</volume><spage>416</spage><epage>422</epage><pages>416-422</pages><issn>0255-5476</issn><issn>1662-9752</issn><eissn>1662-9752</eissn><abstract>Numerical simulation of multicomponent alloy solidification demands accuracy of thermophysical properties in order to obtain a numerical representation as close as possible to the physical reality. Some alloy properties are only seldom found in the literature. In this paper, a solution of Butler’s formulation for surface tension is presented for Al-Cu-Si ternary alloys, allowing the Gibbs-Thomson coefficient to be calculated as a function of Cu and Si contents. The importance of the Gibbs-Thomson coefficient is related to the reliability of predictions furnished by predictive microstructure growth models and of numerical computations of solidification thermal variables that will be strongly dependent on the values of the thermophysical properties adopted in the calculations. A numerical model based on Powell hybrid algorithm and a finite difference Jacobian approximation was coupled with a ThermoCalc TCAPI interface to assess the excess Gibbs energy of the liquid phase, permitting the surface tension and Gibbs-Thomson coefficient for Al-Cu-Si hypoeutectic alloys to be calculated. The computed results are presented as a function of the alloy composition.</abstract><cop>Pfaffikon</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/MSF.869.416</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0255-5476
ispartof Materials science forum, 2016-08, Vol.869, p.416-422
issn 0255-5476
1662-9752
1662-9752
language eng
recordid cdi_proquest_journals_1816102041
source ProQuest Central Essentials; ProQuest Central Student; ProQuest Central (Alumni); Scientific.net Journals
title Application of Computational Thermodynamics to the Evolution of Surface Tension and Gibbs-Thomson Coefficient during Multicomponent Aluminum Alloy Solidification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A10%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Computational%20Thermodynamics%20to%20the%20Evolution%20of%20Surface%20Tension%20and%20Gibbs-Thomson%20Coefficient%20during%20Multicomponent%20Aluminum%20Alloy%20Solidification&rft.jtitle=Materials%20science%20forum&rft.au=J%C3%A1come,%20Paulo%20A.D.&rft.date=2016-08-01&rft.volume=869&rft.spage=416&rft.epage=422&rft.pages=416-422&rft.issn=0255-5476&rft.eissn=1662-9752&rft_id=info:doi/10.4028/www.scientific.net/MSF.869.416&rft_dat=%3Cproquest_cross%3E4168265121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816102041&rft_id=info:pmid/&rfr_iscdi=true