Sustainable zero liquid discharge desalination (SZLDD)

•SZLDD can be achieved by using SGSP as sustainable thermal energy source and brine discharge location.•By positioning the DCMD intake in NCZ and its discharge in the LCZ, it assists with improving SGSP performance.•The mass flux model prediction is at an 85% agreement with the experimental data.•Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy 2016-10, Vol.135, p.337-347
Hauptverfasser: Nakoa, Khaled, Rahaoui, Kawtar, Date, Abhijit, Akbarzadeh, Aliakbar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 347
container_issue
container_start_page 337
container_title Solar energy
container_volume 135
creator Nakoa, Khaled
Rahaoui, Kawtar
Date, Abhijit
Akbarzadeh, Aliakbar
description •SZLDD can be achieved by using SGSP as sustainable thermal energy source and brine discharge location.•By positioning the DCMD intake in NCZ and its discharge in the LCZ, it assists with improving SGSP performance.•The mass flux model prediction is at an 85% agreement with the experimental data.•The trans-membrane coefficient of the used PTFE membrane is about 0.001kg/m2/Pa/h.•The SZLDD system can deliver 52l/day of fresh water for m2 of membrane coupled with RMIT SGSP. The main purpose of this study is to develop a sustainable zero liquid discharge desalination system. Direct contact membrane distillation unit is connected directly to salinity gradient solar pond (SGSP) to achieve zero liquid discharge desalination. The used system contains a hydrophobic microporous membrane module and a plastic pipe circulating all over the pond water surface to be used as a cooling system. The pipe also used as a wave suppression system as it is floating over the top of the pond water surface. The system is sourced by the hot and high concentrated saline water that is extracted from non-convective zone as a feed solution, then, the brine discharges at the lower convective zone of the solar pond. Therefore, if the saturated brine is used to produce salts, there will not be any brine left over which may lead to zero liquid discharge desalination. The system is modelled theoretically and solved by Matlab simulation program. It has been found that the system has the ability to deliver 52l/day of fresh water for m2 of membrane coupled with SGSP, consuming almost 11kW/m2 of thermal energy. Also, the trans-membrane coefficient of the used membrane is proved to be 0.001kg/m2/Pa/h. The results are analysed and the system performance is evaluated and presented in this paper.
doi_str_mv 10.1016/j.solener.2016.05.047
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1815976334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X16301542</els_id><sourcerecordid>4168135471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-6af8d06228ff42a9bd496f643474772ad0934ade4f2e6c3c338490a10f35a7f03</originalsourceid><addsrcrecordid>eNqFkEtLw0AUhQdRsFZ_ghBwo4vEO4_MJCuR1hcUXFRB3AzTeeiEmLQziaC_3int3tXlcs85l_MhdI6hwID5dVPEvrWdDQVJawFlAUwcoAlmAueYlOIQTQBolUNN3o7RSYwNABa4EhPEl2MclO_UqrXZrw191vrN6E1mfNSfKnzYzNio2qQYfN9ll8v3xXx-dYqOnGqjPdvPKXq9v3uZPeaL54en2e0i11SwIefKVQY4IZVzjKh6ZVjNHWeUCSYEUQZqypSxzBHLNdWUVqwGhcHRUgkHdIoudrnr0G9GGwfZ9GPo0kuJK1zWglPKkqrcqXToYwzWyXXwXyr8SAxyi0g2co9IbhFJKGVClHw3O59NFb59ukbtbaet8cHqQZre_5PwB0mTcLM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1815976334</pqid></control><display><type>article</type><title>Sustainable zero liquid discharge desalination (SZLDD)</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Nakoa, Khaled ; Rahaoui, Kawtar ; Date, Abhijit ; Akbarzadeh, Aliakbar</creator><creatorcontrib>Nakoa, Khaled ; Rahaoui, Kawtar ; Date, Abhijit ; Akbarzadeh, Aliakbar</creatorcontrib><description>•SZLDD can be achieved by using SGSP as sustainable thermal energy source and brine discharge location.•By positioning the DCMD intake in NCZ and its discharge in the LCZ, it assists with improving SGSP performance.•The mass flux model prediction is at an 85% agreement with the experimental data.•The trans-membrane coefficient of the used PTFE membrane is about 0.001kg/m2/Pa/h.•The SZLDD system can deliver 52l/day of fresh water for m2 of membrane coupled with RMIT SGSP. The main purpose of this study is to develop a sustainable zero liquid discharge desalination system. Direct contact membrane distillation unit is connected directly to salinity gradient solar pond (SGSP) to achieve zero liquid discharge desalination. The used system contains a hydrophobic microporous membrane module and a plastic pipe circulating all over the pond water surface to be used as a cooling system. The pipe also used as a wave suppression system as it is floating over the top of the pond water surface. The system is sourced by the hot and high concentrated saline water that is extracted from non-convective zone as a feed solution, then, the brine discharges at the lower convective zone of the solar pond. Therefore, if the saturated brine is used to produce salts, there will not be any brine left over which may lead to zero liquid discharge desalination. The system is modelled theoretically and solved by Matlab simulation program. It has been found that the system has the ability to deliver 52l/day of fresh water for m2 of membrane coupled with SGSP, consuming almost 11kW/m2 of thermal energy. Also, the trans-membrane coefficient of the used membrane is proved to be 0.001kg/m2/Pa/h. The results are analysed and the system performance is evaluated and presented in this paper.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2016.05.047</identifier><identifier>CODEN: SRENA4</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Brines ; Cooling systems ; Desalination ; Distillation ; Membrane distillation ; Membranes ; Saline water ; Salinity ; Simulation ; Solar desalination ; Solar energy ; Solar pond ; Thermal energy ; Zero liquid discharge desalination</subject><ispartof>Solar energy, 2016-10, Vol.135, p.337-347</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Oct 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-6af8d06228ff42a9bd496f643474772ad0934ade4f2e6c3c338490a10f35a7f03</citedby><cites>FETCH-LOGICAL-c374t-6af8d06228ff42a9bd496f643474772ad0934ade4f2e6c3c338490a10f35a7f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solener.2016.05.047$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Nakoa, Khaled</creatorcontrib><creatorcontrib>Rahaoui, Kawtar</creatorcontrib><creatorcontrib>Date, Abhijit</creatorcontrib><creatorcontrib>Akbarzadeh, Aliakbar</creatorcontrib><title>Sustainable zero liquid discharge desalination (SZLDD)</title><title>Solar energy</title><description>•SZLDD can be achieved by using SGSP as sustainable thermal energy source and brine discharge location.•By positioning the DCMD intake in NCZ and its discharge in the LCZ, it assists with improving SGSP performance.•The mass flux model prediction is at an 85% agreement with the experimental data.•The trans-membrane coefficient of the used PTFE membrane is about 0.001kg/m2/Pa/h.•The SZLDD system can deliver 52l/day of fresh water for m2 of membrane coupled with RMIT SGSP. The main purpose of this study is to develop a sustainable zero liquid discharge desalination system. Direct contact membrane distillation unit is connected directly to salinity gradient solar pond (SGSP) to achieve zero liquid discharge desalination. The used system contains a hydrophobic microporous membrane module and a plastic pipe circulating all over the pond water surface to be used as a cooling system. The pipe also used as a wave suppression system as it is floating over the top of the pond water surface. The system is sourced by the hot and high concentrated saline water that is extracted from non-convective zone as a feed solution, then, the brine discharges at the lower convective zone of the solar pond. Therefore, if the saturated brine is used to produce salts, there will not be any brine left over which may lead to zero liquid discharge desalination. The system is modelled theoretically and solved by Matlab simulation program. It has been found that the system has the ability to deliver 52l/day of fresh water for m2 of membrane coupled with SGSP, consuming almost 11kW/m2 of thermal energy. Also, the trans-membrane coefficient of the used membrane is proved to be 0.001kg/m2/Pa/h. The results are analysed and the system performance is evaluated and presented in this paper.</description><subject>Brines</subject><subject>Cooling systems</subject><subject>Desalination</subject><subject>Distillation</subject><subject>Membrane distillation</subject><subject>Membranes</subject><subject>Saline water</subject><subject>Salinity</subject><subject>Simulation</subject><subject>Solar desalination</subject><subject>Solar energy</subject><subject>Solar pond</subject><subject>Thermal energy</subject><subject>Zero liquid discharge desalination</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLw0AUhQdRsFZ_ghBwo4vEO4_MJCuR1hcUXFRB3AzTeeiEmLQziaC_3int3tXlcs85l_MhdI6hwID5dVPEvrWdDQVJawFlAUwcoAlmAueYlOIQTQBolUNN3o7RSYwNABa4EhPEl2MclO_UqrXZrw191vrN6E1mfNSfKnzYzNio2qQYfN9ll8v3xXx-dYqOnGqjPdvPKXq9v3uZPeaL54en2e0i11SwIefKVQY4IZVzjKh6ZVjNHWeUCSYEUQZqypSxzBHLNdWUVqwGhcHRUgkHdIoudrnr0G9GGwfZ9GPo0kuJK1zWglPKkqrcqXToYwzWyXXwXyr8SAxyi0g2co9IbhFJKGVClHw3O59NFb59ukbtbaet8cHqQZre_5PwB0mTcLM</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Nakoa, Khaled</creator><creator>Rahaoui, Kawtar</creator><creator>Date, Abhijit</creator><creator>Akbarzadeh, Aliakbar</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20161001</creationdate><title>Sustainable zero liquid discharge desalination (SZLDD)</title><author>Nakoa, Khaled ; Rahaoui, Kawtar ; Date, Abhijit ; Akbarzadeh, Aliakbar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-6af8d06228ff42a9bd496f643474772ad0934ade4f2e6c3c338490a10f35a7f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Brines</topic><topic>Cooling systems</topic><topic>Desalination</topic><topic>Distillation</topic><topic>Membrane distillation</topic><topic>Membranes</topic><topic>Saline water</topic><topic>Salinity</topic><topic>Simulation</topic><topic>Solar desalination</topic><topic>Solar energy</topic><topic>Solar pond</topic><topic>Thermal energy</topic><topic>Zero liquid discharge desalination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakoa, Khaled</creatorcontrib><creatorcontrib>Rahaoui, Kawtar</creatorcontrib><creatorcontrib>Date, Abhijit</creatorcontrib><creatorcontrib>Akbarzadeh, Aliakbar</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakoa, Khaled</au><au>Rahaoui, Kawtar</au><au>Date, Abhijit</au><au>Akbarzadeh, Aliakbar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sustainable zero liquid discharge desalination (SZLDD)</atitle><jtitle>Solar energy</jtitle><date>2016-10-01</date><risdate>2016</risdate><volume>135</volume><spage>337</spage><epage>347</epage><pages>337-347</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><coden>SRENA4</coden><abstract>•SZLDD can be achieved by using SGSP as sustainable thermal energy source and brine discharge location.•By positioning the DCMD intake in NCZ and its discharge in the LCZ, it assists with improving SGSP performance.•The mass flux model prediction is at an 85% agreement with the experimental data.•The trans-membrane coefficient of the used PTFE membrane is about 0.001kg/m2/Pa/h.•The SZLDD system can deliver 52l/day of fresh water for m2 of membrane coupled with RMIT SGSP. The main purpose of this study is to develop a sustainable zero liquid discharge desalination system. Direct contact membrane distillation unit is connected directly to salinity gradient solar pond (SGSP) to achieve zero liquid discharge desalination. The used system contains a hydrophobic microporous membrane module and a plastic pipe circulating all over the pond water surface to be used as a cooling system. The pipe also used as a wave suppression system as it is floating over the top of the pond water surface. The system is sourced by the hot and high concentrated saline water that is extracted from non-convective zone as a feed solution, then, the brine discharges at the lower convective zone of the solar pond. Therefore, if the saturated brine is used to produce salts, there will not be any brine left over which may lead to zero liquid discharge desalination. The system is modelled theoretically and solved by Matlab simulation program. It has been found that the system has the ability to deliver 52l/day of fresh water for m2 of membrane coupled with SGSP, consuming almost 11kW/m2 of thermal energy. Also, the trans-membrane coefficient of the used membrane is proved to be 0.001kg/m2/Pa/h. The results are analysed and the system performance is evaluated and presented in this paper.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2016.05.047</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0038-092X
ispartof Solar energy, 2016-10, Vol.135, p.337-347
issn 0038-092X
1471-1257
language eng
recordid cdi_proquest_journals_1815976334
source Elsevier ScienceDirect Journals Complete
subjects Brines
Cooling systems
Desalination
Distillation
Membrane distillation
Membranes
Saline water
Salinity
Simulation
Solar desalination
Solar energy
Solar pond
Thermal energy
Zero liquid discharge desalination
title Sustainable zero liquid discharge desalination (SZLDD)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A04%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sustainable%20zero%20liquid%20discharge%20desalination%20(SZLDD)&rft.jtitle=Solar%20energy&rft.au=Nakoa,%20Khaled&rft.date=2016-10-01&rft.volume=135&rft.spage=337&rft.epage=347&rft.pages=337-347&rft.issn=0038-092X&rft.eissn=1471-1257&rft.coden=SRENA4&rft_id=info:doi/10.1016/j.solener.2016.05.047&rft_dat=%3Cproquest_cross%3E4168135471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1815976334&rft_id=info:pmid/&rft_els_id=S0038092X16301542&rfr_iscdi=true