Impact of Iron Precipitation on Phosphorus-Implanted Silicon Solar Cells

Ion implantation is a promising method to implement a high-performance emitter for crystalline silicon solar cells. However, an implanted emitter redistributes and mitigates harmful metal impurities to a different degree than a diffused one. This paper quantitatively assesses the effect of iron cont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of photovoltaics 2016-09, Vol.6 (5), p.1094-1102
Hauptverfasser: Laine, Hannu S., Vahanissi, Ville, Morishige, Ashley E., Hofstetter, Jasmin, Haarahiltunen, Antti, Lai, Barry, Savin, Hele, Fenning, David P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1102
container_issue 5
container_start_page 1094
container_title IEEE journal of photovoltaics
container_volume 6
creator Laine, Hannu S.
Vahanissi, Ville
Morishige, Ashley E.
Hofstetter, Jasmin
Haarahiltunen, Antti
Lai, Barry
Savin, Hele
Fenning, David P.
description Ion implantation is a promising method to implement a high-performance emitter for crystalline silicon solar cells. However, an implanted emitter redistributes and mitigates harmful metal impurities to a different degree than a diffused one. This paper quantitatively assesses the effect of iron contamination level on the bulk diffusion length and open-circuit voltage of phosphorus-implanted solar cells manufactured with varying gettering parameters. By synchrotron-based micro-X-ray fluorescence measurements, we directly observe a process-dependent iron precipitate size distribution in the implanted emitters. We show that controlling the iron precipitate size distribution is important when optimizing final cell performance and discover a tradeoff between large shunting precipitates in the emitter and a high density of recombination active small precipitates in the wafer bulk. We present a heterogeneous iron precipitation model capable of reproducing the experimentally measured size distributions. We use the model to show that the dominant gettering mechanism in our samples is precipitation and that implanted emitters with surface phosphorus concentrations around 2×10 19 cm -3 induce little-to-no segregation-based gettering. Based on this finding, we discuss optimal gettering strategies for industrial silicon solar cells with implanted emitters.
doi_str_mv 10.1109/JPHOTOV.2016.2576680
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1813334359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7500099</ieee_id><sourcerecordid>1835609957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-55438eb964323ed1b7b770e6e77b1b78bd5418b0cf6f850cf72f19997e9696f83</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWLS_QA8LXrxsTTabr6MUtZVCC61eQzadpSnbzZrsHvz3prR6MJfJTJ43DA9C9wRPCMHq6X01W26Wn5MCEz4pmOBc4gs0KgjjOS0xvfy9U0mu0TjGPU6HY8Z5OUKz-aEzts98nc2Db7NVAOs615vepe442PnY7XwYYp7QxrQ9bLO1a5xNj2vfmJBNoWniLbqqTRNhfK436OP1ZTOd5Yvl23z6vMgtFbLPGSuphErxkhYUtqQSlRAYOAhRpUZWW1YSWWFb81qyVERRE6WUAMVVGtEb9Hj6twv-a4DY64OLNm1gWvBD1ERSxrFSTCT04R-690No03aJIpTSkjKVqPJE2eBjDFDrLriDCd-aYH00rM-G9dGwPhtOsbtTzAHAX0Sw5FYp-gOb93ZT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1813334359</pqid></control><display><type>article</type><title>Impact of Iron Precipitation on Phosphorus-Implanted Silicon Solar Cells</title><source>IEEE Xplore (Online service)</source><creator>Laine, Hannu S. ; Vahanissi, Ville ; Morishige, Ashley E. ; Hofstetter, Jasmin ; Haarahiltunen, Antti ; Lai, Barry ; Savin, Hele ; Fenning, David P.</creator><creatorcontrib>Laine, Hannu S. ; Vahanissi, Ville ; Morishige, Ashley E. ; Hofstetter, Jasmin ; Haarahiltunen, Antti ; Lai, Barry ; Savin, Hele ; Fenning, David P.</creatorcontrib><description>Ion implantation is a promising method to implement a high-performance emitter for crystalline silicon solar cells. However, an implanted emitter redistributes and mitigates harmful metal impurities to a different degree than a diffused one. This paper quantitatively assesses the effect of iron contamination level on the bulk diffusion length and open-circuit voltage of phosphorus-implanted solar cells manufactured with varying gettering parameters. By synchrotron-based micro-X-ray fluorescence measurements, we directly observe a process-dependent iron precipitate size distribution in the implanted emitters. We show that controlling the iron precipitate size distribution is important when optimizing final cell performance and discover a tradeoff between large shunting precipitates in the emitter and a high density of recombination active small precipitates in the wafer bulk. We present a heterogeneous iron precipitation model capable of reproducing the experimentally measured size distributions. We use the model to show that the dominant gettering mechanism in our samples is precipitation and that implanted emitters with surface phosphorus concentrations around 2×10 19 cm -3 induce little-to-no segregation-based gettering. Based on this finding, we discuss optimal gettering strategies for industrial silicon solar cells with implanted emitters.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2016.2576680</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computer architecture ; Emitters ; Gettering ; ion implantation ; Iron ; Microprocessors ; modeling ; Photovoltaic cells ; Pollution measurement ; Precipitates ; Precipitation ; Silicon ; Size distribution ; solar cell ; Solar cells</subject><ispartof>IEEE journal of photovoltaics, 2016-09, Vol.6 (5), p.1094-1102</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-55438eb964323ed1b7b770e6e77b1b78bd5418b0cf6f850cf72f19997e9696f83</citedby><cites>FETCH-LOGICAL-c378t-55438eb964323ed1b7b770e6e77b1b78bd5418b0cf6f850cf72f19997e9696f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7500099$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7500099$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Laine, Hannu S.</creatorcontrib><creatorcontrib>Vahanissi, Ville</creatorcontrib><creatorcontrib>Morishige, Ashley E.</creatorcontrib><creatorcontrib>Hofstetter, Jasmin</creatorcontrib><creatorcontrib>Haarahiltunen, Antti</creatorcontrib><creatorcontrib>Lai, Barry</creatorcontrib><creatorcontrib>Savin, Hele</creatorcontrib><creatorcontrib>Fenning, David P.</creatorcontrib><title>Impact of Iron Precipitation on Phosphorus-Implanted Silicon Solar Cells</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>Ion implantation is a promising method to implement a high-performance emitter for crystalline silicon solar cells. However, an implanted emitter redistributes and mitigates harmful metal impurities to a different degree than a diffused one. This paper quantitatively assesses the effect of iron contamination level on the bulk diffusion length and open-circuit voltage of phosphorus-implanted solar cells manufactured with varying gettering parameters. By synchrotron-based micro-X-ray fluorescence measurements, we directly observe a process-dependent iron precipitate size distribution in the implanted emitters. We show that controlling the iron precipitate size distribution is important when optimizing final cell performance and discover a tradeoff between large shunting precipitates in the emitter and a high density of recombination active small precipitates in the wafer bulk. We present a heterogeneous iron precipitation model capable of reproducing the experimentally measured size distributions. We use the model to show that the dominant gettering mechanism in our samples is precipitation and that implanted emitters with surface phosphorus concentrations around 2×10 19 cm -3 induce little-to-no segregation-based gettering. Based on this finding, we discuss optimal gettering strategies for industrial silicon solar cells with implanted emitters.</description><subject>Computer architecture</subject><subject>Emitters</subject><subject>Gettering</subject><subject>ion implantation</subject><subject>Iron</subject><subject>Microprocessors</subject><subject>modeling</subject><subject>Photovoltaic cells</subject><subject>Pollution measurement</subject><subject>Precipitates</subject><subject>Precipitation</subject><subject>Silicon</subject><subject>Size distribution</subject><subject>solar cell</subject><subject>Solar cells</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoWLS_QA8LXrxsTTabr6MUtZVCC61eQzadpSnbzZrsHvz3prR6MJfJTJ43DA9C9wRPCMHq6X01W26Wn5MCEz4pmOBc4gs0KgjjOS0xvfy9U0mu0TjGPU6HY8Z5OUKz-aEzts98nc2Db7NVAOs615vepe442PnY7XwYYp7QxrQ9bLO1a5xNj2vfmJBNoWniLbqqTRNhfK436OP1ZTOd5Yvl23z6vMgtFbLPGSuphErxkhYUtqQSlRAYOAhRpUZWW1YSWWFb81qyVERRE6WUAMVVGtEb9Hj6twv-a4DY64OLNm1gWvBD1ERSxrFSTCT04R-690No03aJIpTSkjKVqPJE2eBjDFDrLriDCd-aYH00rM-G9dGwPhtOsbtTzAHAX0Sw5FYp-gOb93ZT</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Laine, Hannu S.</creator><creator>Vahanissi, Ville</creator><creator>Morishige, Ashley E.</creator><creator>Hofstetter, Jasmin</creator><creator>Haarahiltunen, Antti</creator><creator>Lai, Barry</creator><creator>Savin, Hele</creator><creator>Fenning, David P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20160901</creationdate><title>Impact of Iron Precipitation on Phosphorus-Implanted Silicon Solar Cells</title><author>Laine, Hannu S. ; Vahanissi, Ville ; Morishige, Ashley E. ; Hofstetter, Jasmin ; Haarahiltunen, Antti ; Lai, Barry ; Savin, Hele ; Fenning, David P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-55438eb964323ed1b7b770e6e77b1b78bd5418b0cf6f850cf72f19997e9696f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer architecture</topic><topic>Emitters</topic><topic>Gettering</topic><topic>ion implantation</topic><topic>Iron</topic><topic>Microprocessors</topic><topic>modeling</topic><topic>Photovoltaic cells</topic><topic>Pollution measurement</topic><topic>Precipitates</topic><topic>Precipitation</topic><topic>Silicon</topic><topic>Size distribution</topic><topic>solar cell</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laine, Hannu S.</creatorcontrib><creatorcontrib>Vahanissi, Ville</creatorcontrib><creatorcontrib>Morishige, Ashley E.</creatorcontrib><creatorcontrib>Hofstetter, Jasmin</creatorcontrib><creatorcontrib>Haarahiltunen, Antti</creatorcontrib><creatorcontrib>Lai, Barry</creatorcontrib><creatorcontrib>Savin, Hele</creatorcontrib><creatorcontrib>Fenning, David P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Laine, Hannu S.</au><au>Vahanissi, Ville</au><au>Morishige, Ashley E.</au><au>Hofstetter, Jasmin</au><au>Haarahiltunen, Antti</au><au>Lai, Barry</au><au>Savin, Hele</au><au>Fenning, David P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of Iron Precipitation on Phosphorus-Implanted Silicon Solar Cells</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>6</volume><issue>5</issue><spage>1094</spage><epage>1102</epage><pages>1094-1102</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>Ion implantation is a promising method to implement a high-performance emitter for crystalline silicon solar cells. However, an implanted emitter redistributes and mitigates harmful metal impurities to a different degree than a diffused one. This paper quantitatively assesses the effect of iron contamination level on the bulk diffusion length and open-circuit voltage of phosphorus-implanted solar cells manufactured with varying gettering parameters. By synchrotron-based micro-X-ray fluorescence measurements, we directly observe a process-dependent iron precipitate size distribution in the implanted emitters. We show that controlling the iron precipitate size distribution is important when optimizing final cell performance and discover a tradeoff between large shunting precipitates in the emitter and a high density of recombination active small precipitates in the wafer bulk. We present a heterogeneous iron precipitation model capable of reproducing the experimentally measured size distributions. We use the model to show that the dominant gettering mechanism in our samples is precipitation and that implanted emitters with surface phosphorus concentrations around 2×10 19 cm -3 induce little-to-no segregation-based gettering. Based on this finding, we discuss optimal gettering strategies for industrial silicon solar cells with implanted emitters.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2016.2576680</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3381
ispartof IEEE journal of photovoltaics, 2016-09, Vol.6 (5), p.1094-1102
issn 2156-3381
2156-3403
language eng
recordid cdi_proquest_journals_1813334359
source IEEE Xplore (Online service)
subjects Computer architecture
Emitters
Gettering
ion implantation
Iron
Microprocessors
modeling
Photovoltaic cells
Pollution measurement
Precipitates
Precipitation
Silicon
Size distribution
solar cell
Solar cells
title Impact of Iron Precipitation on Phosphorus-Implanted Silicon Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A00%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20Iron%20Precipitation%20on%20Phosphorus-Implanted%20Silicon%20Solar%20Cells&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Laine,%20Hannu%20S.&rft.date=2016-09-01&rft.volume=6&rft.issue=5&rft.spage=1094&rft.epage=1102&rft.pages=1094-1102&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2016.2576680&rft_dat=%3Cproquest_RIE%3E1835609957%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1813334359&rft_id=info:pmid/&rft_ieee_id=7500099&rfr_iscdi=true