Impact of Iron Precipitation on Phosphorus-Implanted Silicon Solar Cells
Ion implantation is a promising method to implement a high-performance emitter for crystalline silicon solar cells. However, an implanted emitter redistributes and mitigates harmful metal impurities to a different degree than a diffused one. This paper quantitatively assesses the effect of iron cont...
Gespeichert in:
Veröffentlicht in: | IEEE journal of photovoltaics 2016-09, Vol.6 (5), p.1094-1102 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1102 |
---|---|
container_issue | 5 |
container_start_page | 1094 |
container_title | IEEE journal of photovoltaics |
container_volume | 6 |
creator | Laine, Hannu S. Vahanissi, Ville Morishige, Ashley E. Hofstetter, Jasmin Haarahiltunen, Antti Lai, Barry Savin, Hele Fenning, David P. |
description | Ion implantation is a promising method to implement a high-performance emitter for crystalline silicon solar cells. However, an implanted emitter redistributes and mitigates harmful metal impurities to a different degree than a diffused one. This paper quantitatively assesses the effect of iron contamination level on the bulk diffusion length and open-circuit voltage of phosphorus-implanted solar cells manufactured with varying gettering parameters. By synchrotron-based micro-X-ray fluorescence measurements, we directly observe a process-dependent iron precipitate size distribution in the implanted emitters. We show that controlling the iron precipitate size distribution is important when optimizing final cell performance and discover a tradeoff between large shunting precipitates in the emitter and a high density of recombination active small precipitates in the wafer bulk. We present a heterogeneous iron precipitation model capable of reproducing the experimentally measured size distributions. We use the model to show that the dominant gettering mechanism in our samples is precipitation and that implanted emitters with surface phosphorus concentrations around 2×10 19 cm -3 induce little-to-no segregation-based gettering. Based on this finding, we discuss optimal gettering strategies for industrial silicon solar cells with implanted emitters. |
doi_str_mv | 10.1109/JPHOTOV.2016.2576680 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1813334359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7500099</ieee_id><sourcerecordid>1835609957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-55438eb964323ed1b7b770e6e77b1b78bd5418b0cf6f850cf72f19997e9696f83</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWLS_QA8LXrxsTTabr6MUtZVCC61eQzadpSnbzZrsHvz3prR6MJfJTJ43DA9C9wRPCMHq6X01W26Wn5MCEz4pmOBc4gs0KgjjOS0xvfy9U0mu0TjGPU6HY8Z5OUKz-aEzts98nc2Db7NVAOs615vepe442PnY7XwYYp7QxrQ9bLO1a5xNj2vfmJBNoWniLbqqTRNhfK436OP1ZTOd5Yvl23z6vMgtFbLPGSuphErxkhYUtqQSlRAYOAhRpUZWW1YSWWFb81qyVERRE6WUAMVVGtEb9Hj6twv-a4DY64OLNm1gWvBD1ERSxrFSTCT04R-690No03aJIpTSkjKVqPJE2eBjDFDrLriDCd-aYH00rM-G9dGwPhtOsbtTzAHAX0Sw5FYp-gOb93ZT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1813334359</pqid></control><display><type>article</type><title>Impact of Iron Precipitation on Phosphorus-Implanted Silicon Solar Cells</title><source>IEEE Xplore (Online service)</source><creator>Laine, Hannu S. ; Vahanissi, Ville ; Morishige, Ashley E. ; Hofstetter, Jasmin ; Haarahiltunen, Antti ; Lai, Barry ; Savin, Hele ; Fenning, David P.</creator><creatorcontrib>Laine, Hannu S. ; Vahanissi, Ville ; Morishige, Ashley E. ; Hofstetter, Jasmin ; Haarahiltunen, Antti ; Lai, Barry ; Savin, Hele ; Fenning, David P.</creatorcontrib><description>Ion implantation is a promising method to implement a high-performance emitter for crystalline silicon solar cells. However, an implanted emitter redistributes and mitigates harmful metal impurities to a different degree than a diffused one. This paper quantitatively assesses the effect of iron contamination level on the bulk diffusion length and open-circuit voltage of phosphorus-implanted solar cells manufactured with varying gettering parameters. By synchrotron-based micro-X-ray fluorescence measurements, we directly observe a process-dependent iron precipitate size distribution in the implanted emitters. We show that controlling the iron precipitate size distribution is important when optimizing final cell performance and discover a tradeoff between large shunting precipitates in the emitter and a high density of recombination active small precipitates in the wafer bulk. We present a heterogeneous iron precipitation model capable of reproducing the experimentally measured size distributions. We use the model to show that the dominant gettering mechanism in our samples is precipitation and that implanted emitters with surface phosphorus concentrations around 2×10 19 cm -3 induce little-to-no segregation-based gettering. Based on this finding, we discuss optimal gettering strategies for industrial silicon solar cells with implanted emitters.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2016.2576680</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computer architecture ; Emitters ; Gettering ; ion implantation ; Iron ; Microprocessors ; modeling ; Photovoltaic cells ; Pollution measurement ; Precipitates ; Precipitation ; Silicon ; Size distribution ; solar cell ; Solar cells</subject><ispartof>IEEE journal of photovoltaics, 2016-09, Vol.6 (5), p.1094-1102</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-55438eb964323ed1b7b770e6e77b1b78bd5418b0cf6f850cf72f19997e9696f83</citedby><cites>FETCH-LOGICAL-c378t-55438eb964323ed1b7b770e6e77b1b78bd5418b0cf6f850cf72f19997e9696f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7500099$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7500099$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Laine, Hannu S.</creatorcontrib><creatorcontrib>Vahanissi, Ville</creatorcontrib><creatorcontrib>Morishige, Ashley E.</creatorcontrib><creatorcontrib>Hofstetter, Jasmin</creatorcontrib><creatorcontrib>Haarahiltunen, Antti</creatorcontrib><creatorcontrib>Lai, Barry</creatorcontrib><creatorcontrib>Savin, Hele</creatorcontrib><creatorcontrib>Fenning, David P.</creatorcontrib><title>Impact of Iron Precipitation on Phosphorus-Implanted Silicon Solar Cells</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>Ion implantation is a promising method to implement a high-performance emitter for crystalline silicon solar cells. However, an implanted emitter redistributes and mitigates harmful metal impurities to a different degree than a diffused one. This paper quantitatively assesses the effect of iron contamination level on the bulk diffusion length and open-circuit voltage of phosphorus-implanted solar cells manufactured with varying gettering parameters. By synchrotron-based micro-X-ray fluorescence measurements, we directly observe a process-dependent iron precipitate size distribution in the implanted emitters. We show that controlling the iron precipitate size distribution is important when optimizing final cell performance and discover a tradeoff between large shunting precipitates in the emitter and a high density of recombination active small precipitates in the wafer bulk. We present a heterogeneous iron precipitation model capable of reproducing the experimentally measured size distributions. We use the model to show that the dominant gettering mechanism in our samples is precipitation and that implanted emitters with surface phosphorus concentrations around 2×10 19 cm -3 induce little-to-no segregation-based gettering. Based on this finding, we discuss optimal gettering strategies for industrial silicon solar cells with implanted emitters.</description><subject>Computer architecture</subject><subject>Emitters</subject><subject>Gettering</subject><subject>ion implantation</subject><subject>Iron</subject><subject>Microprocessors</subject><subject>modeling</subject><subject>Photovoltaic cells</subject><subject>Pollution measurement</subject><subject>Precipitates</subject><subject>Precipitation</subject><subject>Silicon</subject><subject>Size distribution</subject><subject>solar cell</subject><subject>Solar cells</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoWLS_QA8LXrxsTTabr6MUtZVCC61eQzadpSnbzZrsHvz3prR6MJfJTJ43DA9C9wRPCMHq6X01W26Wn5MCEz4pmOBc4gs0KgjjOS0xvfy9U0mu0TjGPU6HY8Z5OUKz-aEzts98nc2Db7NVAOs615vepe442PnY7XwYYp7QxrQ9bLO1a5xNj2vfmJBNoWniLbqqTRNhfK436OP1ZTOd5Yvl23z6vMgtFbLPGSuphErxkhYUtqQSlRAYOAhRpUZWW1YSWWFb81qyVERRE6WUAMVVGtEb9Hj6twv-a4DY64OLNm1gWvBD1ERSxrFSTCT04R-690No03aJIpTSkjKVqPJE2eBjDFDrLriDCd-aYH00rM-G9dGwPhtOsbtTzAHAX0Sw5FYp-gOb93ZT</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Laine, Hannu S.</creator><creator>Vahanissi, Ville</creator><creator>Morishige, Ashley E.</creator><creator>Hofstetter, Jasmin</creator><creator>Haarahiltunen, Antti</creator><creator>Lai, Barry</creator><creator>Savin, Hele</creator><creator>Fenning, David P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20160901</creationdate><title>Impact of Iron Precipitation on Phosphorus-Implanted Silicon Solar Cells</title><author>Laine, Hannu S. ; Vahanissi, Ville ; Morishige, Ashley E. ; Hofstetter, Jasmin ; Haarahiltunen, Antti ; Lai, Barry ; Savin, Hele ; Fenning, David P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-55438eb964323ed1b7b770e6e77b1b78bd5418b0cf6f850cf72f19997e9696f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer architecture</topic><topic>Emitters</topic><topic>Gettering</topic><topic>ion implantation</topic><topic>Iron</topic><topic>Microprocessors</topic><topic>modeling</topic><topic>Photovoltaic cells</topic><topic>Pollution measurement</topic><topic>Precipitates</topic><topic>Precipitation</topic><topic>Silicon</topic><topic>Size distribution</topic><topic>solar cell</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laine, Hannu S.</creatorcontrib><creatorcontrib>Vahanissi, Ville</creatorcontrib><creatorcontrib>Morishige, Ashley E.</creatorcontrib><creatorcontrib>Hofstetter, Jasmin</creatorcontrib><creatorcontrib>Haarahiltunen, Antti</creatorcontrib><creatorcontrib>Lai, Barry</creatorcontrib><creatorcontrib>Savin, Hele</creatorcontrib><creatorcontrib>Fenning, David P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Laine, Hannu S.</au><au>Vahanissi, Ville</au><au>Morishige, Ashley E.</au><au>Hofstetter, Jasmin</au><au>Haarahiltunen, Antti</au><au>Lai, Barry</au><au>Savin, Hele</au><au>Fenning, David P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of Iron Precipitation on Phosphorus-Implanted Silicon Solar Cells</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>6</volume><issue>5</issue><spage>1094</spage><epage>1102</epage><pages>1094-1102</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>Ion implantation is a promising method to implement a high-performance emitter for crystalline silicon solar cells. However, an implanted emitter redistributes and mitigates harmful metal impurities to a different degree than a diffused one. This paper quantitatively assesses the effect of iron contamination level on the bulk diffusion length and open-circuit voltage of phosphorus-implanted solar cells manufactured with varying gettering parameters. By synchrotron-based micro-X-ray fluorescence measurements, we directly observe a process-dependent iron precipitate size distribution in the implanted emitters. We show that controlling the iron precipitate size distribution is important when optimizing final cell performance and discover a tradeoff between large shunting precipitates in the emitter and a high density of recombination active small precipitates in the wafer bulk. We present a heterogeneous iron precipitation model capable of reproducing the experimentally measured size distributions. We use the model to show that the dominant gettering mechanism in our samples is precipitation and that implanted emitters with surface phosphorus concentrations around 2×10 19 cm -3 induce little-to-no segregation-based gettering. Based on this finding, we discuss optimal gettering strategies for industrial silicon solar cells with implanted emitters.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2016.2576680</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-3381 |
ispartof | IEEE journal of photovoltaics, 2016-09, Vol.6 (5), p.1094-1102 |
issn | 2156-3381 2156-3403 |
language | eng |
recordid | cdi_proquest_journals_1813334359 |
source | IEEE Xplore (Online service) |
subjects | Computer architecture Emitters Gettering ion implantation Iron Microprocessors modeling Photovoltaic cells Pollution measurement Precipitates Precipitation Silicon Size distribution solar cell Solar cells |
title | Impact of Iron Precipitation on Phosphorus-Implanted Silicon Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A00%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20Iron%20Precipitation%20on%20Phosphorus-Implanted%20Silicon%20Solar%20Cells&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Laine,%20Hannu%20S.&rft.date=2016-09-01&rft.volume=6&rft.issue=5&rft.spage=1094&rft.epage=1102&rft.pages=1094-1102&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2016.2576680&rft_dat=%3Cproquest_RIE%3E1835609957%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1813334359&rft_id=info:pmid/&rft_ieee_id=7500099&rfr_iscdi=true |