On discounted AR–AT semi-Markov games and its complementarity formulations
In this paper, we introduce a class of two-person finite discounted AR–AT (Additive Reward–Additive Transition) semi-Markov games (SMGs). We provide counterexamples to show that AR–AT and AR–AT–PT (Additive Reward–Additive Transition Probability and Time) SMGs do not satisfy the ordered field proper...
Gespeichert in:
Veröffentlicht in: | International journal of game theory 2016-08, Vol.45 (3), p.567-583 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 583 |
---|---|
container_issue | 3 |
container_start_page | 567 |
container_title | International journal of game theory |
container_volume | 45 |
creator | Mondal, P. Sinha, S. Neogy, S. K. Das, A. K. |
description | In this paper, we introduce a class of two-person finite discounted AR–AT (Additive Reward–Additive Transition) semi-Markov games (SMGs). We provide counterexamples to show that AR–AT and AR–AT–PT (Additive Reward–Additive Transition Probability and Time) SMGs do not satisfy the ordered field property. Some results on AR–AT–AITT (Additive Reward–Additive Transition and Action Independent Transition Time) and AR–AIT–ATT (Additive Reward–Action Independent Transition and Additive Transition Time) games are obtained in this paper. For the zero-sum games, we prove the ordered field property and the existence of pure stationary optimals for the players. Moreover, such games are formulated as a vertical linear complementarity problem (VLCP) and have been solved by Cottle-Dantzig’s algorithm under a mild assumption. We illustrate that the nonzero-sum case of such games do not necessarily have pure stationary equilibria. However, there exists a stationary equilibria which has at most two pure actions in each state for each player. |
doi_str_mv | 10.1007/s00182-015-0470-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1812603158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4152609161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-fefb51d78ff7938889f6cffbbfc1a09d930cdcf6e2dacc3443bb8719f60a8c213</originalsourceid><addsrcrecordid>eNp1kL1OwzAURi0EEqXwAGyWmA332mnsjFXFn1SEhMpsOY5dpTRxsROkbrwDb8iTkCoMLEx3Od-50iHkEuEaAeRNAkDFGeCMQSaB4RGZYCY4Qy7hmEwAODDJZX5KzlLawLABxSdk-dzSqk429G3nKjp_-f78mq9ock3Nnkx8Cx90bRqXqGkrWneJ2tDstq5xbWdi3e2pD7Hpt6arQ5vOyYk32-Qufu-UvN7drhYPbPl8_7iYL5kVCjrmnS9nWEnlvSyEUqrwufW-LL1FA0VVCLCV9bnjlbFWZJkoSyVxoMAoy1FMydXo3cXw3rvU6U3oYzu81KiQ5yBwpgYKR8rGkFJ0Xu9i3Zi41wj6EE2P0fQQTR-i6YOZj5s0sO3axT_mf0c_iIRw2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812603158</pqid></control><display><type>article</type><title>On discounted AR–AT semi-Markov games and its complementarity formulations</title><source>Springer Nature - Complete Springer Journals</source><source>Business Source Complete</source><creator>Mondal, P. ; Sinha, S. ; Neogy, S. K. ; Das, A. K.</creator><creatorcontrib>Mondal, P. ; Sinha, S. ; Neogy, S. K. ; Das, A. K.</creatorcontrib><description>In this paper, we introduce a class of two-person finite discounted AR–AT (Additive Reward–Additive Transition) semi-Markov games (SMGs). We provide counterexamples to show that AR–AT and AR–AT–PT (Additive Reward–Additive Transition Probability and Time) SMGs do not satisfy the ordered field property. Some results on AR–AT–AITT (Additive Reward–Additive Transition and Action Independent Transition Time) and AR–AIT–ATT (Additive Reward–Action Independent Transition and Additive Transition Time) games are obtained in this paper. For the zero-sum games, we prove the ordered field property and the existence of pure stationary optimals for the players. Moreover, such games are formulated as a vertical linear complementarity problem (VLCP) and have been solved by Cottle-Dantzig’s algorithm under a mild assumption. We illustrate that the nonzero-sum case of such games do not necessarily have pure stationary equilibria. However, there exists a stationary equilibria which has at most two pure actions in each state for each player.</description><identifier>ISSN: 0020-7276</identifier><identifier>EISSN: 1432-1270</identifier><identifier>DOI: 10.1007/s00182-015-0470-1</identifier><identifier>CODEN: IJGTA2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Behavioral/Experimental Economics ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Equilibrium ; Game Theory ; Games ; Operations Research/Decision Theory ; Probability distribution ; Random variables ; Social and Behav. Sciences ; Studies</subject><ispartof>International journal of game theory, 2016-08, Vol.45 (3), p.567-583</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-fefb51d78ff7938889f6cffbbfc1a09d930cdcf6e2dacc3443bb8719f60a8c213</citedby><cites>FETCH-LOGICAL-c380t-fefb51d78ff7938889f6cffbbfc1a09d930cdcf6e2dacc3443bb8719f60a8c213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00182-015-0470-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00182-015-0470-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Mondal, P.</creatorcontrib><creatorcontrib>Sinha, S.</creatorcontrib><creatorcontrib>Neogy, S. K.</creatorcontrib><creatorcontrib>Das, A. K.</creatorcontrib><title>On discounted AR–AT semi-Markov games and its complementarity formulations</title><title>International journal of game theory</title><addtitle>Int J Game Theory</addtitle><description>In this paper, we introduce a class of two-person finite discounted AR–AT (Additive Reward–Additive Transition) semi-Markov games (SMGs). We provide counterexamples to show that AR–AT and AR–AT–PT (Additive Reward–Additive Transition Probability and Time) SMGs do not satisfy the ordered field property. Some results on AR–AT–AITT (Additive Reward–Additive Transition and Action Independent Transition Time) and AR–AIT–ATT (Additive Reward–Action Independent Transition and Additive Transition Time) games are obtained in this paper. For the zero-sum games, we prove the ordered field property and the existence of pure stationary optimals for the players. Moreover, such games are formulated as a vertical linear complementarity problem (VLCP) and have been solved by Cottle-Dantzig’s algorithm under a mild assumption. We illustrate that the nonzero-sum case of such games do not necessarily have pure stationary equilibria. However, there exists a stationary equilibria which has at most two pure actions in each state for each player.</description><subject>Algorithms</subject><subject>Behavioral/Experimental Economics</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Equilibrium</subject><subject>Game Theory</subject><subject>Games</subject><subject>Operations Research/Decision Theory</subject><subject>Probability distribution</subject><subject>Random variables</subject><subject>Social and Behav. Sciences</subject><subject>Studies</subject><issn>0020-7276</issn><issn>1432-1270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kL1OwzAURi0EEqXwAGyWmA332mnsjFXFn1SEhMpsOY5dpTRxsROkbrwDb8iTkCoMLEx3Od-50iHkEuEaAeRNAkDFGeCMQSaB4RGZYCY4Qy7hmEwAODDJZX5KzlLawLABxSdk-dzSqk429G3nKjp_-f78mq9ock3Nnkx8Cx90bRqXqGkrWneJ2tDstq5xbWdi3e2pD7Hpt6arQ5vOyYk32-Qufu-UvN7drhYPbPl8_7iYL5kVCjrmnS9nWEnlvSyEUqrwufW-LL1FA0VVCLCV9bnjlbFWZJkoSyVxoMAoy1FMydXo3cXw3rvU6U3oYzu81KiQ5yBwpgYKR8rGkFJ0Xu9i3Zi41wj6EE2P0fQQTR-i6YOZj5s0sO3axT_mf0c_iIRw2Q</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Mondal, P.</creator><creator>Sinha, S.</creator><creator>Neogy, S. K.</creator><creator>Das, A. K.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20160801</creationdate><title>On discounted AR–AT semi-Markov games and its complementarity formulations</title><author>Mondal, P. ; Sinha, S. ; Neogy, S. K. ; Das, A. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-fefb51d78ff7938889f6cffbbfc1a09d930cdcf6e2dacc3443bb8719f60a8c213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Behavioral/Experimental Economics</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Equilibrium</topic><topic>Game Theory</topic><topic>Games</topic><topic>Operations Research/Decision Theory</topic><topic>Probability distribution</topic><topic>Random variables</topic><topic>Social and Behav. Sciences</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mondal, P.</creatorcontrib><creatorcontrib>Sinha, S.</creatorcontrib><creatorcontrib>Neogy, S. K.</creatorcontrib><creatorcontrib>Das, A. K.</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of game theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mondal, P.</au><au>Sinha, S.</au><au>Neogy, S. K.</au><au>Das, A. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On discounted AR–AT semi-Markov games and its complementarity formulations</atitle><jtitle>International journal of game theory</jtitle><stitle>Int J Game Theory</stitle><date>2016-08-01</date><risdate>2016</risdate><volume>45</volume><issue>3</issue><spage>567</spage><epage>583</epage><pages>567-583</pages><issn>0020-7276</issn><eissn>1432-1270</eissn><coden>IJGTA2</coden><abstract>In this paper, we introduce a class of two-person finite discounted AR–AT (Additive Reward–Additive Transition) semi-Markov games (SMGs). We provide counterexamples to show that AR–AT and AR–AT–PT (Additive Reward–Additive Transition Probability and Time) SMGs do not satisfy the ordered field property. Some results on AR–AT–AITT (Additive Reward–Additive Transition and Action Independent Transition Time) and AR–AIT–ATT (Additive Reward–Action Independent Transition and Additive Transition Time) games are obtained in this paper. For the zero-sum games, we prove the ordered field property and the existence of pure stationary optimals for the players. Moreover, such games are formulated as a vertical linear complementarity problem (VLCP) and have been solved by Cottle-Dantzig’s algorithm under a mild assumption. We illustrate that the nonzero-sum case of such games do not necessarily have pure stationary equilibria. However, there exists a stationary equilibria which has at most two pure actions in each state for each player.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00182-015-0470-1</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7276 |
ispartof | International journal of game theory, 2016-08, Vol.45 (3), p.567-583 |
issn | 0020-7276 1432-1270 |
language | eng |
recordid | cdi_proquest_journals_1812603158 |
source | Springer Nature - Complete Springer Journals; Business Source Complete |
subjects | Algorithms Behavioral/Experimental Economics Economic Theory/Quantitative Economics/Mathematical Methods Economics Economics and Finance Equilibrium Game Theory Games Operations Research/Decision Theory Probability distribution Random variables Social and Behav. Sciences Studies |
title | On discounted AR–AT semi-Markov games and its complementarity formulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A20%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20discounted%20AR%E2%80%93AT%20semi-Markov%20games%20and%20its%20complementarity%20formulations&rft.jtitle=International%20journal%20of%20game%20theory&rft.au=Mondal,%20P.&rft.date=2016-08-01&rft.volume=45&rft.issue=3&rft.spage=567&rft.epage=583&rft.pages=567-583&rft.issn=0020-7276&rft.eissn=1432-1270&rft.coden=IJGTA2&rft_id=info:doi/10.1007/s00182-015-0470-1&rft_dat=%3Cproquest_cross%3E4152609161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1812603158&rft_id=info:pmid/&rfr_iscdi=true |