Robust Restoration Method for Active Distribution Networks

Distributed generations (DGs) introduce significant uncertainties to restoration of active distribution networks, in addition to roughly estimated load demands. An adjustable robust restoration optimization model with a two-stage objective is proposed in this paper, involving the uncertain DG output...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2016-09, Vol.31 (5), p.4005-4015
Hauptverfasser: Chen, Xin, Wu, Wenchuan, Zhang, Boming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4015
container_issue 5
container_start_page 4005
container_title IEEE transactions on power systems
container_volume 31
creator Chen, Xin
Wu, Wenchuan
Zhang, Boming
description Distributed generations (DGs) introduce significant uncertainties to restoration of active distribution networks, in addition to roughly estimated load demands. An adjustable robust restoration optimization model with a two-stage objective is proposed in this paper, involving the uncertain DG outputs and load demands. The first stage generates optimal strategies for recovery of outage power and the second stage seeks the worst-case fluctuation scenarios. The model is formulated as a mixed-integer linear programming problem and solved using the column-and-constraint generation method. The feasibility and reliability of the strategies obtained via this robust optimization model can be guaranteed for all cases in the predefined uncertainty sets with good performance. A technique known as the uncertainty budget is used to adjust the conservativeness of this model, providing a tradeoff between conservativeness and robustness. Numerical tests are carried out on the modified PG&E 69-bus system and a modified 246-bus system to compare the robust optimization model against a deterministic restoration model, which verifies the superiority of this proposed model.
doi_str_mv 10.1109/TPWRS.2015.2503426
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1812546034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7352378</ieee_id><sourcerecordid>1835611144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-ec4c7dac481dbf98e1c1c843f19e0724c67c4e6f3942c8a762bfac729ccc90c73</originalsourceid><addsrcrecordid>eNpdkEtPAjEUhRujiYj-Ad1M4sbNYN8PdwSfCT6CGJfNcOnEQaDYdjT-ewsYF67u4nzn5uRD6JjgHiHYnI-fXkfPPYqJ6FGBGadyB3WIELrEUpld1MFai1IbgffRQYwzjLHMQQddjPykjakYuZh8qFLjl8W9S29-WtQ-FH1IzacrLpuYQjNpN_GDS18-vMdDtFdX8-iOfm8XvVxfjQe35fDx5m7QH5bAlEqlAw5qWgHXZDqpjXYECGjOamIcVpSDVMCdrJnhFHSlJJ3UFShqAMBgUKyLzrZ_V8F_tHmnXTQR3HxeLZ1voyWaCUkI4Tyjp__QmW_DMq_LFKGCy-wmU3RLQfAxBlfbVWgWVfi2BNu1TrvRadc67a_OXDrZlhrn3F9BMUGZ0uwHEUhxJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812546034</pqid></control><display><type>article</type><title>Robust Restoration Method for Active Distribution Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Xin ; Wu, Wenchuan ; Zhang, Boming</creator><creatorcontrib>Chen, Xin ; Wu, Wenchuan ; Zhang, Boming</creatorcontrib><description>Distributed generations (DGs) introduce significant uncertainties to restoration of active distribution networks, in addition to roughly estimated load demands. An adjustable robust restoration optimization model with a two-stage objective is proposed in this paper, involving the uncertain DG outputs and load demands. The first stage generates optimal strategies for recovery of outage power and the second stage seeks the worst-case fluctuation scenarios. The model is formulated as a mixed-integer linear programming problem and solved using the column-and-constraint generation method. The feasibility and reliability of the strategies obtained via this robust optimization model can be guaranteed for all cases in the predefined uncertainty sets with good performance. A technique known as the uncertainty budget is used to adjust the conservativeness of this model, providing a tradeoff between conservativeness and robustness. Numerical tests are carried out on the modified PG&amp;E 69-bus system and a modified 246-bus system to compare the robust optimization model against a deterministic restoration model, which verifies the superiority of this proposed model.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2015.2503426</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active distribution network ; Adjustment ; Distribution management ; Linear programming ; Load modeling ; Mathematical model ; Mathematical models ; Mathematical programming ; Networks ; Nonlinear programming ; Numerical models ; Optimization ; Restoration ; robust optimization ; Robustness ; service restoration ; Strategy ; Uncertainty</subject><ispartof>IEEE transactions on power systems, 2016-09, Vol.31 (5), p.4005-4015</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-ec4c7dac481dbf98e1c1c843f19e0724c67c4e6f3942c8a762bfac729ccc90c73</citedby><cites>FETCH-LOGICAL-c377t-ec4c7dac481dbf98e1c1c843f19e0724c67c4e6f3942c8a762bfac729ccc90c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7352378$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7352378$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Wu, Wenchuan</creatorcontrib><creatorcontrib>Zhang, Boming</creatorcontrib><title>Robust Restoration Method for Active Distribution Networks</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>Distributed generations (DGs) introduce significant uncertainties to restoration of active distribution networks, in addition to roughly estimated load demands. An adjustable robust restoration optimization model with a two-stage objective is proposed in this paper, involving the uncertain DG outputs and load demands. The first stage generates optimal strategies for recovery of outage power and the second stage seeks the worst-case fluctuation scenarios. The model is formulated as a mixed-integer linear programming problem and solved using the column-and-constraint generation method. The feasibility and reliability of the strategies obtained via this robust optimization model can be guaranteed for all cases in the predefined uncertainty sets with good performance. A technique known as the uncertainty budget is used to adjust the conservativeness of this model, providing a tradeoff between conservativeness and robustness. Numerical tests are carried out on the modified PG&amp;E 69-bus system and a modified 246-bus system to compare the robust optimization model against a deterministic restoration model, which verifies the superiority of this proposed model.</description><subject>Active distribution network</subject><subject>Adjustment</subject><subject>Distribution management</subject><subject>Linear programming</subject><subject>Load modeling</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Mathematical programming</subject><subject>Networks</subject><subject>Nonlinear programming</subject><subject>Numerical models</subject><subject>Optimization</subject><subject>Restoration</subject><subject>robust optimization</subject><subject>Robustness</subject><subject>service restoration</subject><subject>Strategy</subject><subject>Uncertainty</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtPAjEUhRujiYj-Ad1M4sbNYN8PdwSfCT6CGJfNcOnEQaDYdjT-ewsYF67u4nzn5uRD6JjgHiHYnI-fXkfPPYqJ6FGBGadyB3WIELrEUpld1MFai1IbgffRQYwzjLHMQQddjPykjakYuZh8qFLjl8W9S29-WtQ-FH1IzacrLpuYQjNpN_GDS18-vMdDtFdX8-iOfm8XvVxfjQe35fDx5m7QH5bAlEqlAw5qWgHXZDqpjXYECGjOamIcVpSDVMCdrJnhFHSlJJ3UFShqAMBgUKyLzrZ_V8F_tHmnXTQR3HxeLZ1voyWaCUkI4Tyjp__QmW_DMq_LFKGCy-wmU3RLQfAxBlfbVWgWVfi2BNu1TrvRadc67a_OXDrZlhrn3F9BMUGZ0uwHEUhxJA</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Chen, Xin</creator><creator>Wu, Wenchuan</creator><creator>Zhang, Boming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>201609</creationdate><title>Robust Restoration Method for Active Distribution Networks</title><author>Chen, Xin ; Wu, Wenchuan ; Zhang, Boming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-ec4c7dac481dbf98e1c1c843f19e0724c67c4e6f3942c8a762bfac729ccc90c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Active distribution network</topic><topic>Adjustment</topic><topic>Distribution management</topic><topic>Linear programming</topic><topic>Load modeling</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Mathematical programming</topic><topic>Networks</topic><topic>Nonlinear programming</topic><topic>Numerical models</topic><topic>Optimization</topic><topic>Restoration</topic><topic>robust optimization</topic><topic>Robustness</topic><topic>service restoration</topic><topic>Strategy</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Wu, Wenchuan</creatorcontrib><creatorcontrib>Zhang, Boming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Xin</au><au>Wu, Wenchuan</au><au>Zhang, Boming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Restoration Method for Active Distribution Networks</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2016-09</date><risdate>2016</risdate><volume>31</volume><issue>5</issue><spage>4005</spage><epage>4015</epage><pages>4005-4015</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>Distributed generations (DGs) introduce significant uncertainties to restoration of active distribution networks, in addition to roughly estimated load demands. An adjustable robust restoration optimization model with a two-stage objective is proposed in this paper, involving the uncertain DG outputs and load demands. The first stage generates optimal strategies for recovery of outage power and the second stage seeks the worst-case fluctuation scenarios. The model is formulated as a mixed-integer linear programming problem and solved using the column-and-constraint generation method. The feasibility and reliability of the strategies obtained via this robust optimization model can be guaranteed for all cases in the predefined uncertainty sets with good performance. A technique known as the uncertainty budget is used to adjust the conservativeness of this model, providing a tradeoff between conservativeness and robustness. Numerical tests are carried out on the modified PG&amp;E 69-bus system and a modified 246-bus system to compare the robust optimization model against a deterministic restoration model, which verifies the superiority of this proposed model.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2015.2503426</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2016-09, Vol.31 (5), p.4005-4015
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_journals_1812546034
source IEEE Electronic Library (IEL)
subjects Active distribution network
Adjustment
Distribution management
Linear programming
Load modeling
Mathematical model
Mathematical models
Mathematical programming
Networks
Nonlinear programming
Numerical models
Optimization
Restoration
robust optimization
Robustness
service restoration
Strategy
Uncertainty
title Robust Restoration Method for Active Distribution Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A36%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Restoration%20Method%20for%20Active%20Distribution%20Networks&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Chen,%20Xin&rft.date=2016-09&rft.volume=31&rft.issue=5&rft.spage=4005&rft.epage=4015&rft.pages=4005-4015&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2015.2503426&rft_dat=%3Cproquest_RIE%3E1835611144%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1812546034&rft_id=info:pmid/&rft_ieee_id=7352378&rfr_iscdi=true