On Skew E-W Matrices

An E–W matrix M is a ( − 1, 1)‐matrix of order 4t+2, where t is a positive integer, satisfying that the absolute value of its determinant attains Ehlich–Wojtas' bound. M is said to be of skew type (or simply skew) if M−I is skew‐symmetric where I is the identity matrix. In this paper, we draw a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial designs 2016-10, Vol.24 (10), p.461-472
Hauptverfasser: Armario, José Andrés, Frau, María Dolores
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 472
container_issue 10
container_start_page 461
container_title Journal of combinatorial designs
container_volume 24
creator Armario, José Andrés
Frau, María Dolores
description An E–W matrix M is a ( − 1, 1)‐matrix of order 4t+2, where t is a positive integer, satisfying that the absolute value of its determinant attains Ehlich–Wojtas' bound. M is said to be of skew type (or simply skew) if M−I is skew‐symmetric where I is the identity matrix. In this paper, we draw a parallel between skew E–W matrices and skew Hadamard matrices concerning a question about the maximal determinant. As a consequence, a problem posted on Cameron's website [7] has been partially solved. Finally, codes constructed from skew E–W matrices are presented. A necessary and sufficient condition for these codes to be self‐dual is given, and examples are provided for lengths up to 52.
doi_str_mv 10.1002/jcd.21519
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1811924469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4149588281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3709-46ab0067a3933fbcefc65162ce6e762310d3a15cb2f86978bbaf25fe57b2d09a3</originalsourceid><addsrcrecordid>eNp1j01PAjEQQBujiYgeTPwBJJ48FGbabbs9GgQUUQ5-cGy6pU0WELCFIP_e1VVvnmYO783kEXKO0EYA1pm5aZuhQH1AGigYUCkRDqsdJKe54PqYnKQ0AwCtuWyQi_Gy9TT3u1aPTloPdhNL59MpOQp2kfzZz2ySl37vuXtLR-PBXfd6RB1XoGkmbQEgleWa81A4H5wUKJnz0ivJOMKUWxSuYCGXWuVFYQMTwQtVsCloy5vksr67jqv3rU8bM1tt47J6aTBH1CzLpK6oq5pycZVS9MGsY_lm494gmK9oU0Wb7-iK7dTsrlz4_f-gGXZvfg1aG2Xa-I8_w8a5kYorYSaPA5O93iudDbUB_gkHBGO-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811924469</pqid></control><display><type>article</type><title>On Skew E-W Matrices</title><source>Access via Wiley Online Library</source><creator>Armario, José Andrés ; Frau, María Dolores</creator><creatorcontrib>Armario, José Andrés ; Frau, María Dolores</creatorcontrib><description>An E–W matrix M is a ( − 1, 1)‐matrix of order 4t+2, where t is a positive integer, satisfying that the absolute value of its determinant attains Ehlich–Wojtas' bound. M is said to be of skew type (or simply skew) if M−I is skew‐symmetric where I is the identity matrix. In this paper, we draw a parallel between skew E–W matrices and skew Hadamard matrices concerning a question about the maximal determinant. As a consequence, a problem posted on Cameron's website [7] has been partially solved. Finally, codes constructed from skew E–W matrices are presented. A necessary and sufficient condition for these codes to be self‐dual is given, and examples are provided for lengths up to 52.</description><identifier>ISSN: 1063-8539</identifier><identifier>EISSN: 1520-6610</identifier><identifier>DOI: 10.1002/jcd.21519</identifier><identifier>CODEN: JDESEU</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>maximal determinants ; self-dual codes ; skew E-W matrices</subject><ispartof>Journal of combinatorial designs, 2016-10, Vol.24 (10), p.461-472</ispartof><rights>2016 Wiley Periodicals, Inc.</rights><rights>Copyright © 2016 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3709-46ab0067a3933fbcefc65162ce6e762310d3a15cb2f86978bbaf25fe57b2d09a3</citedby><cites>FETCH-LOGICAL-c3709-46ab0067a3933fbcefc65162ce6e762310d3a15cb2f86978bbaf25fe57b2d09a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcd.21519$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcd.21519$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids></links><search><creatorcontrib>Armario, José Andrés</creatorcontrib><creatorcontrib>Frau, María Dolores</creatorcontrib><title>On Skew E-W Matrices</title><title>Journal of combinatorial designs</title><addtitle>J. Combin. Designs</addtitle><description>An E–W matrix M is a ( − 1, 1)‐matrix of order 4t+2, where t is a positive integer, satisfying that the absolute value of its determinant attains Ehlich–Wojtas' bound. M is said to be of skew type (or simply skew) if M−I is skew‐symmetric where I is the identity matrix. In this paper, we draw a parallel between skew E–W matrices and skew Hadamard matrices concerning a question about the maximal determinant. As a consequence, a problem posted on Cameron's website [7] has been partially solved. Finally, codes constructed from skew E–W matrices are presented. A necessary and sufficient condition for these codes to be self‐dual is given, and examples are provided for lengths up to 52.</description><subject>maximal determinants</subject><subject>self-dual codes</subject><subject>skew E-W matrices</subject><issn>1063-8539</issn><issn>1520-6610</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1j01PAjEQQBujiYgeTPwBJJ48FGbabbs9GgQUUQ5-cGy6pU0WELCFIP_e1VVvnmYO783kEXKO0EYA1pm5aZuhQH1AGigYUCkRDqsdJKe54PqYnKQ0AwCtuWyQi_Gy9TT3u1aPTloPdhNL59MpOQp2kfzZz2ySl37vuXtLR-PBXfd6RB1XoGkmbQEgleWa81A4H5wUKJnz0ivJOMKUWxSuYCGXWuVFYQMTwQtVsCloy5vksr67jqv3rU8bM1tt47J6aTBH1CzLpK6oq5pycZVS9MGsY_lm494gmK9oU0Wb7-iK7dTsrlz4_f-gGXZvfg1aG2Xa-I8_w8a5kYorYSaPA5O93iudDbUB_gkHBGO-</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Armario, José Andrés</creator><creator>Frau, María Dolores</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201610</creationdate><title>On Skew E-W Matrices</title><author>Armario, José Andrés ; Frau, María Dolores</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3709-46ab0067a3933fbcefc65162ce6e762310d3a15cb2f86978bbaf25fe57b2d09a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>maximal determinants</topic><topic>self-dual codes</topic><topic>skew E-W matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Armario, José Andrés</creatorcontrib><creatorcontrib>Frau, María Dolores</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of combinatorial designs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Armario, José Andrés</au><au>Frau, María Dolores</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Skew E-W Matrices</atitle><jtitle>Journal of combinatorial designs</jtitle><addtitle>J. Combin. Designs</addtitle><date>2016-10</date><risdate>2016</risdate><volume>24</volume><issue>10</issue><spage>461</spage><epage>472</epage><pages>461-472</pages><issn>1063-8539</issn><eissn>1520-6610</eissn><coden>JDESEU</coden><abstract>An E–W matrix M is a ( − 1, 1)‐matrix of order 4t+2, where t is a positive integer, satisfying that the absolute value of its determinant attains Ehlich–Wojtas' bound. M is said to be of skew type (or simply skew) if M−I is skew‐symmetric where I is the identity matrix. In this paper, we draw a parallel between skew E–W matrices and skew Hadamard matrices concerning a question about the maximal determinant. As a consequence, a problem posted on Cameron's website [7] has been partially solved. Finally, codes constructed from skew E–W matrices are presented. A necessary and sufficient condition for these codes to be self‐dual is given, and examples are provided for lengths up to 52.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/jcd.21519</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1063-8539
ispartof Journal of combinatorial designs, 2016-10, Vol.24 (10), p.461-472
issn 1063-8539
1520-6610
language eng
recordid cdi_proquest_journals_1811924469
source Access via Wiley Online Library
subjects maximal determinants
self-dual codes
skew E-W matrices
title On Skew E-W Matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T05%3A36%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Skew%20E-W%20Matrices&rft.jtitle=Journal%20of%20combinatorial%20designs&rft.au=Armario,%20Jos%C3%A9%20Andr%C3%A9s&rft.date=2016-10&rft.volume=24&rft.issue=10&rft.spage=461&rft.epage=472&rft.pages=461-472&rft.issn=1063-8539&rft.eissn=1520-6610&rft.coden=JDESEU&rft_id=info:doi/10.1002/jcd.21519&rft_dat=%3Cproquest_cross%3E4149588281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1811924469&rft_id=info:pmid/&rfr_iscdi=true