Nanoscale Microstructure and Chemistry of Cu2ZnSnS4/CdS Interface in Kesterite Cu2ZnSnS4 Solar Cells

Sulfurization with various atmosphere and postheat treatments has been reported for earth abundant kesterite Cu2ZnSnS4 (CZTS) preparation as cost‐effective material for next‐generation solar cells. A full understanding of the nanoscale microstructure and chemistry of CZTS/CdS interface obtained from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2016-08, Vol.6 (15), p.n/a
Hauptverfasser: Liu, Fangyang, Yan, Chang, Huang, Jialiang, Sun, Kaiwen, Zhou, Fangzhou, Stride, John A., Green, Martin A., Hao, Xiaojing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 15
container_start_page
container_title Advanced energy materials
container_volume 6
creator Liu, Fangyang
Yan, Chang
Huang, Jialiang
Sun, Kaiwen
Zhou, Fangzhou
Stride, John A.
Green, Martin A.
Hao, Xiaojing
description Sulfurization with various atmosphere and postheat treatments has been reported for earth abundant kesterite Cu2ZnSnS4 (CZTS) preparation as cost‐effective material for next‐generation solar cells. A full understanding of the nanoscale microstructure and chemistry of CZTS/CdS interface obtained from these different fabrication routes is currently lacking, yet is critical to developing optimal processing routes for high‐performance kesterite solar cells. Here, the first detailed investigation of the interfacial microstructure and chemistry of CdS/Cu2ZnSnS4 heterojunctions is presented. For CZTS obtained from sulfurization in a sulfur‐only atmosphere where highly defective surfaces are present, air annealing followed by etching in the initial stage of chemical bath deposition (CBD) process can effectively eliminate interfacial defects and allow the epitaxial growth of CBD‐CdS, improving the minority lifetime, open circuit voltage (VOC), and fill factor (FF) of the devices, while blocking Cd diffusion and deteriorating short circuit current (Jsc). For CZTS from sulfurization in a combined sulfur and SnS atmosphere where CBD‐CdS can directly epitaxially grow on CZTS and Cd‐diffusion is clearly observed, associated devices show the longest lifetime and the highest efficiency of 8.76%. Epitaxial growth of CdS and Cd diffusion into CZTS are found to be two crucial features minimizing interfacial recombination and achieving high‐efficiency devices. This will not only enhance the understanding of the device structure and physics of kesterite based solar cells, but also provide an effective way for designing other chalcogenide heterojunction solar cells. The interfacial microstructure and chemistry of CdS/Cu2ZnSnS4 (CZTS) heterojunction in kesterite Cu2ZnSnS4 solar cells are investigated. The correlations between interfacial properties of CZTS/CdS and film growth processes as well as associated device performance have been revealed. Epitaxial growth of CdS and Cd diffusion into CZTS are found to be two crucial features minimizing interfacial recombination and achieving high‐efficiency device.
doi_str_mv 10.1002/aenm.201600706
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1811570426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4148298831</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3786-e8bf37cf85913ad349260f60f3d7e355068bcf5ebe380e01219810214cb4d6d53</originalsourceid><addsrcrecordid>eNpFUFFLwzAQLqLgmHv1OeBzt0vSpunjiHMOt4lUEXwJaXvVzq6daYvu35sxmcfB3Xd8393xed41hTEFYBOD9XbMgAqACMSZN6CCBr6QAZyfes4uvVHbbsBFEFPgfODla1M3bWYqJKsys03b2T7reovE1DlRH7gt3WhPmoKonr3VSZ0EE5UnZFF3aAuTISlr8oCtQ2WH_ySSNJWxRGFVtVfeRWGqFkd_dei93M2e1b2_fJwv1HTpv_NICh9lWvAoK2QYU25yHsRMQOGS5xHyMAQh06wIMUUuAYEyGksKjAZZGuQiD_nQuznu3dnmq3c_6U3T29qd1FRSGkYQMOFY8ZH1XVa41ztbbo3dawr64KQ-OKlPTurpbL06Iaf1j1rnCv6ctMZ-ahHxKNSv67lm6lat5rHST_wXrxJ3Fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811570426</pqid></control><display><type>article</type><title>Nanoscale Microstructure and Chemistry of Cu2ZnSnS4/CdS Interface in Kesterite Cu2ZnSnS4 Solar Cells</title><source>Access via Wiley Online Library</source><creator>Liu, Fangyang ; Yan, Chang ; Huang, Jialiang ; Sun, Kaiwen ; Zhou, Fangzhou ; Stride, John A. ; Green, Martin A. ; Hao, Xiaojing</creator><creatorcontrib>Liu, Fangyang ; Yan, Chang ; Huang, Jialiang ; Sun, Kaiwen ; Zhou, Fangzhou ; Stride, John A. ; Green, Martin A. ; Hao, Xiaojing</creatorcontrib><description>Sulfurization with various atmosphere and postheat treatments has been reported for earth abundant kesterite Cu2ZnSnS4 (CZTS) preparation as cost‐effective material for next‐generation solar cells. A full understanding of the nanoscale microstructure and chemistry of CZTS/CdS interface obtained from these different fabrication routes is currently lacking, yet is critical to developing optimal processing routes for high‐performance kesterite solar cells. Here, the first detailed investigation of the interfacial microstructure and chemistry of CdS/Cu2ZnSnS4 heterojunctions is presented. For CZTS obtained from sulfurization in a sulfur‐only atmosphere where highly defective surfaces are present, air annealing followed by etching in the initial stage of chemical bath deposition (CBD) process can effectively eliminate interfacial defects and allow the epitaxial growth of CBD‐CdS, improving the minority lifetime, open circuit voltage (VOC), and fill factor (FF) of the devices, while blocking Cd diffusion and deteriorating short circuit current (Jsc). For CZTS from sulfurization in a combined sulfur and SnS atmosphere where CBD‐CdS can directly epitaxially grow on CZTS and Cd‐diffusion is clearly observed, associated devices show the longest lifetime and the highest efficiency of 8.76%. Epitaxial growth of CdS and Cd diffusion into CZTS are found to be two crucial features minimizing interfacial recombination and achieving high‐efficiency devices. This will not only enhance the understanding of the device structure and physics of kesterite based solar cells, but also provide an effective way for designing other chalcogenide heterojunction solar cells. The interfacial microstructure and chemistry of CdS/Cu2ZnSnS4 (CZTS) heterojunction in kesterite Cu2ZnSnS4 solar cells are investigated. The correlations between interfacial properties of CZTS/CdS and film growth processes as well as associated device performance have been revealed. Epitaxial growth of CdS and Cd diffusion into CZTS are found to be two crucial features minimizing interfacial recombination and achieving high‐efficiency device.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201600706</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Cd diffusion ; CdS buffers ; Chemistry ; epitaxy ; microstructures ; Photovoltaic cells ; solar cells ; Sulfur</subject><ispartof>Advanced energy materials, 2016-08, Vol.6 (15), p.n/a</ispartof><rights>2016 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201600706$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201600706$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Liu, Fangyang</creatorcontrib><creatorcontrib>Yan, Chang</creatorcontrib><creatorcontrib>Huang, Jialiang</creatorcontrib><creatorcontrib>Sun, Kaiwen</creatorcontrib><creatorcontrib>Zhou, Fangzhou</creatorcontrib><creatorcontrib>Stride, John A.</creatorcontrib><creatorcontrib>Green, Martin A.</creatorcontrib><creatorcontrib>Hao, Xiaojing</creatorcontrib><title>Nanoscale Microstructure and Chemistry of Cu2ZnSnS4/CdS Interface in Kesterite Cu2ZnSnS4 Solar Cells</title><title>Advanced energy materials</title><addtitle>Adv. Energy Mater</addtitle><description>Sulfurization with various atmosphere and postheat treatments has been reported for earth abundant kesterite Cu2ZnSnS4 (CZTS) preparation as cost‐effective material for next‐generation solar cells. A full understanding of the nanoscale microstructure and chemistry of CZTS/CdS interface obtained from these different fabrication routes is currently lacking, yet is critical to developing optimal processing routes for high‐performance kesterite solar cells. Here, the first detailed investigation of the interfacial microstructure and chemistry of CdS/Cu2ZnSnS4 heterojunctions is presented. For CZTS obtained from sulfurization in a sulfur‐only atmosphere where highly defective surfaces are present, air annealing followed by etching in the initial stage of chemical bath deposition (CBD) process can effectively eliminate interfacial defects and allow the epitaxial growth of CBD‐CdS, improving the minority lifetime, open circuit voltage (VOC), and fill factor (FF) of the devices, while blocking Cd diffusion and deteriorating short circuit current (Jsc). For CZTS from sulfurization in a combined sulfur and SnS atmosphere where CBD‐CdS can directly epitaxially grow on CZTS and Cd‐diffusion is clearly observed, associated devices show the longest lifetime and the highest efficiency of 8.76%. Epitaxial growth of CdS and Cd diffusion into CZTS are found to be two crucial features minimizing interfacial recombination and achieving high‐efficiency devices. This will not only enhance the understanding of the device structure and physics of kesterite based solar cells, but also provide an effective way for designing other chalcogenide heterojunction solar cells. The interfacial microstructure and chemistry of CdS/Cu2ZnSnS4 (CZTS) heterojunction in kesterite Cu2ZnSnS4 solar cells are investigated. The correlations between interfacial properties of CZTS/CdS and film growth processes as well as associated device performance have been revealed. Epitaxial growth of CdS and Cd diffusion into CZTS are found to be two crucial features minimizing interfacial recombination and achieving high‐efficiency device.</description><subject>Cd diffusion</subject><subject>CdS buffers</subject><subject>Chemistry</subject><subject>epitaxy</subject><subject>microstructures</subject><subject>Photovoltaic cells</subject><subject>solar cells</subject><subject>Sulfur</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpFUFFLwzAQLqLgmHv1OeBzt0vSpunjiHMOt4lUEXwJaXvVzq6daYvu35sxmcfB3Xd8393xed41hTEFYBOD9XbMgAqACMSZN6CCBr6QAZyfes4uvVHbbsBFEFPgfODla1M3bWYqJKsys03b2T7reovE1DlRH7gt3WhPmoKonr3VSZ0EE5UnZFF3aAuTISlr8oCtQ2WH_ySSNJWxRGFVtVfeRWGqFkd_dei93M2e1b2_fJwv1HTpv_NICh9lWvAoK2QYU25yHsRMQOGS5xHyMAQh06wIMUUuAYEyGksKjAZZGuQiD_nQuznu3dnmq3c_6U3T29qd1FRSGkYQMOFY8ZH1XVa41ztbbo3dawr64KQ-OKlPTurpbL06Iaf1j1rnCv6ctMZ-ahHxKNSv67lm6lat5rHST_wXrxJ3Fw</recordid><startdate>20160810</startdate><enddate>20160810</enddate><creator>Liu, Fangyang</creator><creator>Yan, Chang</creator><creator>Huang, Jialiang</creator><creator>Sun, Kaiwen</creator><creator>Zhou, Fangzhou</creator><creator>Stride, John A.</creator><creator>Green, Martin A.</creator><creator>Hao, Xiaojing</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160810</creationdate><title>Nanoscale Microstructure and Chemistry of Cu2ZnSnS4/CdS Interface in Kesterite Cu2ZnSnS4 Solar Cells</title><author>Liu, Fangyang ; Yan, Chang ; Huang, Jialiang ; Sun, Kaiwen ; Zhou, Fangzhou ; Stride, John A. ; Green, Martin A. ; Hao, Xiaojing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3786-e8bf37cf85913ad349260f60f3d7e355068bcf5ebe380e01219810214cb4d6d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cd diffusion</topic><topic>CdS buffers</topic><topic>Chemistry</topic><topic>epitaxy</topic><topic>microstructures</topic><topic>Photovoltaic cells</topic><topic>solar cells</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Fangyang</creatorcontrib><creatorcontrib>Yan, Chang</creatorcontrib><creatorcontrib>Huang, Jialiang</creatorcontrib><creatorcontrib>Sun, Kaiwen</creatorcontrib><creatorcontrib>Zhou, Fangzhou</creatorcontrib><creatorcontrib>Stride, John A.</creatorcontrib><creatorcontrib>Green, Martin A.</creatorcontrib><creatorcontrib>Hao, Xiaojing</creatorcontrib><collection>Istex</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Fangyang</au><au>Yan, Chang</au><au>Huang, Jialiang</au><au>Sun, Kaiwen</au><au>Zhou, Fangzhou</au><au>Stride, John A.</au><au>Green, Martin A.</au><au>Hao, Xiaojing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale Microstructure and Chemistry of Cu2ZnSnS4/CdS Interface in Kesterite Cu2ZnSnS4 Solar Cells</atitle><jtitle>Advanced energy materials</jtitle><addtitle>Adv. Energy Mater</addtitle><date>2016-08-10</date><risdate>2016</risdate><volume>6</volume><issue>15</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Sulfurization with various atmosphere and postheat treatments has been reported for earth abundant kesterite Cu2ZnSnS4 (CZTS) preparation as cost‐effective material for next‐generation solar cells. A full understanding of the nanoscale microstructure and chemistry of CZTS/CdS interface obtained from these different fabrication routes is currently lacking, yet is critical to developing optimal processing routes for high‐performance kesterite solar cells. Here, the first detailed investigation of the interfacial microstructure and chemistry of CdS/Cu2ZnSnS4 heterojunctions is presented. For CZTS obtained from sulfurization in a sulfur‐only atmosphere where highly defective surfaces are present, air annealing followed by etching in the initial stage of chemical bath deposition (CBD) process can effectively eliminate interfacial defects and allow the epitaxial growth of CBD‐CdS, improving the minority lifetime, open circuit voltage (VOC), and fill factor (FF) of the devices, while blocking Cd diffusion and deteriorating short circuit current (Jsc). For CZTS from sulfurization in a combined sulfur and SnS atmosphere where CBD‐CdS can directly epitaxially grow on CZTS and Cd‐diffusion is clearly observed, associated devices show the longest lifetime and the highest efficiency of 8.76%. Epitaxial growth of CdS and Cd diffusion into CZTS are found to be two crucial features minimizing interfacial recombination and achieving high‐efficiency devices. This will not only enhance the understanding of the device structure and physics of kesterite based solar cells, but also provide an effective way for designing other chalcogenide heterojunction solar cells. The interfacial microstructure and chemistry of CdS/Cu2ZnSnS4 (CZTS) heterojunction in kesterite Cu2ZnSnS4 solar cells are investigated. The correlations between interfacial properties of CZTS/CdS and film growth processes as well as associated device performance have been revealed. Epitaxial growth of CdS and Cd diffusion into CZTS are found to be two crucial features minimizing interfacial recombination and achieving high‐efficiency device.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/aenm.201600706</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2016-08, Vol.6 (15), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_1811570426
source Access via Wiley Online Library
subjects Cd diffusion
CdS buffers
Chemistry
epitaxy
microstructures
Photovoltaic cells
solar cells
Sulfur
title Nanoscale Microstructure and Chemistry of Cu2ZnSnS4/CdS Interface in Kesterite Cu2ZnSnS4 Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A45%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20Microstructure%20and%20Chemistry%20of%20Cu2ZnSnS4/CdS%20Interface%20in%20Kesterite%20Cu2ZnSnS4%20Solar%20Cells&rft.jtitle=Advanced%20energy%20materials&rft.au=Liu,%20Fangyang&rft.date=2016-08-10&rft.volume=6&rft.issue=15&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201600706&rft_dat=%3Cproquest_wiley%3E4148298831%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1811570426&rft_id=info:pmid/&rfr_iscdi=true