Evaluation of humidity sensing properties of TMBHPET thin film embedded with spinel cobalt ferrite nanoparticles
In this study, we report the enhanced sensing parameters of previously reported TMBHPET-based humidity sensor. Significant improved sensing performance has been demonstrated by coupling of TMBHPET moisture sensing thin film with cobalt ferrite nanoparticles (synthesized by eco-benign ultrasonic meth...
Gespeichert in:
Veröffentlicht in: | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2016-07, Vol.18 (7), p.1, Article 186 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 1 |
container_title | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology |
container_volume | 18 |
creator | Zafar, Qayyum Azmer, Mohamad Izzat Al-Sehemi, Abdullah G. Al-Assiri, Mohammad S. Kalam, Abul Sulaiman, Khaulah |
description | In this study, we report the enhanced sensing parameters of previously reported TMBHPET-based humidity sensor. Significant improved sensing performance has been demonstrated by coupling of TMBHPET moisture sensing thin film with cobalt ferrite nanoparticles (synthesized by eco-benign ultrasonic method). The mean size of CoFe
2
O
4
nanoparticles has been estimated to be ~ 6.5 nm. It is assumed that the thin film of organic–ceramic hybrid matrix (TMBHPET:CoFe
2
O
4
) is a potential candidate for humidity sensing utility by virtue of its high specific surface area and porous surface morphology (as evident from TEM, FESEM, and AFM images). The hybrid suspension has been drop-cast onto the glass substrate with preliminary deposited coplanar aluminum electrodes separated by 40 µm distance. The influence of humidity on the capacitance of the hybrid humidity sensor (Al/TMBHPET:CoFe
2
O
4
/Al) has been investigated at three different frequencies of the AC applied voltage (
V
rms
~ 1 V): 100 Hz, 1 kHz, and 10 kHz. It has been observed that at 100 Hz, under a humidity of 99 % RH, the capacitance of the sensor increased by 2.61 times, with respect to 30 % RH condition. The proposed sensor exhibits significantly improved sensitivity ~560 fF/ % RH at 100 Hz, which is nearly 7.5 times as high as that of pristine TMBHPET-based humidity sensor. Further, the capacitive sensor exhibits improved dynamic range (30–99 % RH), small hysteresis (~2.3 %), and relatively quicker response and recovery times (~12 s, 14 s, respectively). It is assumed that the humidity response of the sensor is associated with the diffusion kinetics of water vapors and doping of the semiconductor nanocomposite by water molecules. |
doi_str_mv | 10.1007/s11051-016-3488-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1810940209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4145349751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-f343a51271e8fbf22b9916a4fa7dcbc463f66c7550af8423c5ff45212410a0e23</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssQ74mccSqkKRimBRJHaW49itq8QJtgPq3-MqLNiwmtHMvXc0B4BrjG4xQsVdwBhxnCGcZ5SVZVadgBnmBcnKKv84TT1NQ1Tk7BxchLBHSUgqMgPD8ku2o4y2d7A3cDd2trHxAIN2wbotHHw_aB-tDsf15uVh9bbcwLizDhrbdlB3tW4a3cBvG3cwDNbpFqq-lm2ERntvo4ZOun6QKUS1OlyCMyPboK9-6xy8Py43i1W2fn16XtyvM0V5ETNDGZUckwLr0tSGkLqqcC6ZkUWjasVyavJcFZwjaUpGqOLGME4wYRhJpAmdg5spN33wOeoQxb4fvUsnBS4xqhgiqEoqPKmU70Pw2ojB2076g8BIHMGKCaxIvMQRrDh6yOQJSeu22v9J_tf0A7-NfFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1810940209</pqid></control><display><type>article</type><title>Evaluation of humidity sensing properties of TMBHPET thin film embedded with spinel cobalt ferrite nanoparticles</title><source>Springer Nature - Complete Springer Journals</source><creator>Zafar, Qayyum ; Azmer, Mohamad Izzat ; Al-Sehemi, Abdullah G. ; Al-Assiri, Mohammad S. ; Kalam, Abul ; Sulaiman, Khaulah</creator><creatorcontrib>Zafar, Qayyum ; Azmer, Mohamad Izzat ; Al-Sehemi, Abdullah G. ; Al-Assiri, Mohammad S. ; Kalam, Abul ; Sulaiman, Khaulah</creatorcontrib><description>In this study, we report the enhanced sensing parameters of previously reported TMBHPET-based humidity sensor. Significant improved sensing performance has been demonstrated by coupling of TMBHPET moisture sensing thin film with cobalt ferrite nanoparticles (synthesized by eco-benign ultrasonic method). The mean size of CoFe
2
O
4
nanoparticles has been estimated to be ~ 6.5 nm. It is assumed that the thin film of organic–ceramic hybrid matrix (TMBHPET:CoFe
2
O
4
) is a potential candidate for humidity sensing utility by virtue of its high specific surface area and porous surface morphology (as evident from TEM, FESEM, and AFM images). The hybrid suspension has been drop-cast onto the glass substrate with preliminary deposited coplanar aluminum electrodes separated by 40 µm distance. The influence of humidity on the capacitance of the hybrid humidity sensor (Al/TMBHPET:CoFe
2
O
4
/Al) has been investigated at three different frequencies of the AC applied voltage (
V
rms
~ 1 V): 100 Hz, 1 kHz, and 10 kHz. It has been observed that at 100 Hz, under a humidity of 99 % RH, the capacitance of the sensor increased by 2.61 times, with respect to 30 % RH condition. The proposed sensor exhibits significantly improved sensitivity ~560 fF/ % RH at 100 Hz, which is nearly 7.5 times as high as that of pristine TMBHPET-based humidity sensor. Further, the capacitive sensor exhibits improved dynamic range (30–99 % RH), small hysteresis (~2.3 %), and relatively quicker response and recovery times (~12 s, 14 s, respectively). It is assumed that the humidity response of the sensor is associated with the diffusion kinetics of water vapors and doping of the semiconductor nanocomposite by water molecules.</description><identifier>ISSN: 1388-0764</identifier><identifier>EISSN: 1572-896X</identifier><identifier>DOI: 10.1007/s11051-016-3488-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aluminum ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cobalt ; Humidity ; Inorganic Chemistry ; Lasers ; Materials Science ; Nanoparticles ; Nanotechnology ; Optical Devices ; Optics ; Photonics ; Physical Chemistry ; Research Paper ; Thin films ; Vapors ; Water vapor</subject><ispartof>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2016-07, Vol.18 (7), p.1, Article 186</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-f343a51271e8fbf22b9916a4fa7dcbc463f66c7550af8423c5ff45212410a0e23</citedby><cites>FETCH-LOGICAL-c357t-f343a51271e8fbf22b9916a4fa7dcbc463f66c7550af8423c5ff45212410a0e23</cites><orcidid>0000-0001-6763-9587</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11051-016-3488-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11051-016-3488-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zafar, Qayyum</creatorcontrib><creatorcontrib>Azmer, Mohamad Izzat</creatorcontrib><creatorcontrib>Al-Sehemi, Abdullah G.</creatorcontrib><creatorcontrib>Al-Assiri, Mohammad S.</creatorcontrib><creatorcontrib>Kalam, Abul</creatorcontrib><creatorcontrib>Sulaiman, Khaulah</creatorcontrib><title>Evaluation of humidity sensing properties of TMBHPET thin film embedded with spinel cobalt ferrite nanoparticles</title><title>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</title><addtitle>J Nanopart Res</addtitle><description>In this study, we report the enhanced sensing parameters of previously reported TMBHPET-based humidity sensor. Significant improved sensing performance has been demonstrated by coupling of TMBHPET moisture sensing thin film with cobalt ferrite nanoparticles (synthesized by eco-benign ultrasonic method). The mean size of CoFe
2
O
4
nanoparticles has been estimated to be ~ 6.5 nm. It is assumed that the thin film of organic–ceramic hybrid matrix (TMBHPET:CoFe
2
O
4
) is a potential candidate for humidity sensing utility by virtue of its high specific surface area and porous surface morphology (as evident from TEM, FESEM, and AFM images). The hybrid suspension has been drop-cast onto the glass substrate with preliminary deposited coplanar aluminum electrodes separated by 40 µm distance. The influence of humidity on the capacitance of the hybrid humidity sensor (Al/TMBHPET:CoFe
2
O
4
/Al) has been investigated at three different frequencies of the AC applied voltage (
V
rms
~ 1 V): 100 Hz, 1 kHz, and 10 kHz. It has been observed that at 100 Hz, under a humidity of 99 % RH, the capacitance of the sensor increased by 2.61 times, with respect to 30 % RH condition. The proposed sensor exhibits significantly improved sensitivity ~560 fF/ % RH at 100 Hz, which is nearly 7.5 times as high as that of pristine TMBHPET-based humidity sensor. Further, the capacitive sensor exhibits improved dynamic range (30–99 % RH), small hysteresis (~2.3 %), and relatively quicker response and recovery times (~12 s, 14 s, respectively). It is assumed that the humidity response of the sensor is associated with the diffusion kinetics of water vapors and doping of the semiconductor nanocomposite by water molecules.</description><subject>Aluminum</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cobalt</subject><subject>Humidity</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Research Paper</subject><subject>Thin films</subject><subject>Vapors</subject><subject>Water vapor</subject><issn>1388-0764</issn><issn>1572-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMtOwzAQRS0EEqXwAewssQ74mccSqkKRimBRJHaW49itq8QJtgPq3-MqLNiwmtHMvXc0B4BrjG4xQsVdwBhxnCGcZ5SVZVadgBnmBcnKKv84TT1NQ1Tk7BxchLBHSUgqMgPD8ku2o4y2d7A3cDd2trHxAIN2wbotHHw_aB-tDsf15uVh9bbcwLizDhrbdlB3tW4a3cBvG3cwDNbpFqq-lm2ERntvo4ZOun6QKUS1OlyCMyPboK9-6xy8Py43i1W2fn16XtyvM0V5ETNDGZUckwLr0tSGkLqqcC6ZkUWjasVyavJcFZwjaUpGqOLGME4wYRhJpAmdg5spN33wOeoQxb4fvUsnBS4xqhgiqEoqPKmU70Pw2ojB2076g8BIHMGKCaxIvMQRrDh6yOQJSeu22v9J_tf0A7-NfFw</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Zafar, Qayyum</creator><creator>Azmer, Mohamad Izzat</creator><creator>Al-Sehemi, Abdullah G.</creator><creator>Al-Assiri, Mohammad S.</creator><creator>Kalam, Abul</creator><creator>Sulaiman, Khaulah</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6763-9587</orcidid></search><sort><creationdate>20160701</creationdate><title>Evaluation of humidity sensing properties of TMBHPET thin film embedded with spinel cobalt ferrite nanoparticles</title><author>Zafar, Qayyum ; Azmer, Mohamad Izzat ; Al-Sehemi, Abdullah G. ; Al-Assiri, Mohammad S. ; Kalam, Abul ; Sulaiman, Khaulah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-f343a51271e8fbf22b9916a4fa7dcbc463f66c7550af8423c5ff45212410a0e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aluminum</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cobalt</topic><topic>Humidity</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Research Paper</topic><topic>Thin films</topic><topic>Vapors</topic><topic>Water vapor</topic><toplevel>online_resources</toplevel><creatorcontrib>Zafar, Qayyum</creatorcontrib><creatorcontrib>Azmer, Mohamad Izzat</creatorcontrib><creatorcontrib>Al-Sehemi, Abdullah G.</creatorcontrib><creatorcontrib>Al-Assiri, Mohammad S.</creatorcontrib><creatorcontrib>Kalam, Abul</creatorcontrib><creatorcontrib>Sulaiman, Khaulah</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zafar, Qayyum</au><au>Azmer, Mohamad Izzat</au><au>Al-Sehemi, Abdullah G.</au><au>Al-Assiri, Mohammad S.</au><au>Kalam, Abul</au><au>Sulaiman, Khaulah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of humidity sensing properties of TMBHPET thin film embedded with spinel cobalt ferrite nanoparticles</atitle><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle><stitle>J Nanopart Res</stitle><date>2016-07-01</date><risdate>2016</risdate><volume>18</volume><issue>7</issue><spage>1</spage><pages>1-</pages><artnum>186</artnum><issn>1388-0764</issn><eissn>1572-896X</eissn><abstract>In this study, we report the enhanced sensing parameters of previously reported TMBHPET-based humidity sensor. Significant improved sensing performance has been demonstrated by coupling of TMBHPET moisture sensing thin film with cobalt ferrite nanoparticles (synthesized by eco-benign ultrasonic method). The mean size of CoFe
2
O
4
nanoparticles has been estimated to be ~ 6.5 nm. It is assumed that the thin film of organic–ceramic hybrid matrix (TMBHPET:CoFe
2
O
4
) is a potential candidate for humidity sensing utility by virtue of its high specific surface area and porous surface morphology (as evident from TEM, FESEM, and AFM images). The hybrid suspension has been drop-cast onto the glass substrate with preliminary deposited coplanar aluminum electrodes separated by 40 µm distance. The influence of humidity on the capacitance of the hybrid humidity sensor (Al/TMBHPET:CoFe
2
O
4
/Al) has been investigated at three different frequencies of the AC applied voltage (
V
rms
~ 1 V): 100 Hz, 1 kHz, and 10 kHz. It has been observed that at 100 Hz, under a humidity of 99 % RH, the capacitance of the sensor increased by 2.61 times, with respect to 30 % RH condition. The proposed sensor exhibits significantly improved sensitivity ~560 fF/ % RH at 100 Hz, which is nearly 7.5 times as high as that of pristine TMBHPET-based humidity sensor. Further, the capacitive sensor exhibits improved dynamic range (30–99 % RH), small hysteresis (~2.3 %), and relatively quicker response and recovery times (~12 s, 14 s, respectively). It is assumed that the humidity response of the sensor is associated with the diffusion kinetics of water vapors and doping of the semiconductor nanocomposite by water molecules.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11051-016-3488-9</doi><orcidid>https://orcid.org/0000-0001-6763-9587</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-0764 |
ispartof | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2016-07, Vol.18 (7), p.1, Article 186 |
issn | 1388-0764 1572-896X |
language | eng |
recordid | cdi_proquest_journals_1810940209 |
source | Springer Nature - Complete Springer Journals |
subjects | Aluminum Characterization and Evaluation of Materials Chemistry and Materials Science Cobalt Humidity Inorganic Chemistry Lasers Materials Science Nanoparticles Nanotechnology Optical Devices Optics Photonics Physical Chemistry Research Paper Thin films Vapors Water vapor |
title | Evaluation of humidity sensing properties of TMBHPET thin film embedded with spinel cobalt ferrite nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A48%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20humidity%20sensing%20properties%20of%20TMBHPET%20thin%20film%20embedded%20with%20spinel%20cobalt%20ferrite%20nanoparticles&rft.jtitle=Journal%20of%20nanoparticle%20research%20:%20an%20interdisciplinary%20forum%20for%20nanoscale%20science%20and%20technology&rft.au=Zafar,%20Qayyum&rft.date=2016-07-01&rft.volume=18&rft.issue=7&rft.spage=1&rft.pages=1-&rft.artnum=186&rft.issn=1388-0764&rft.eissn=1572-896X&rft_id=info:doi/10.1007/s11051-016-3488-9&rft_dat=%3Cproquest_cross%3E4145349751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1810940209&rft_id=info:pmid/&rfr_iscdi=true |