Glucansucrase Gtf180-[DELTA]N of Lactobacillus reuteri 180: enzyme and reaction engineering for improved glycosylation of non-carbohydrate molecules

Glucansucrases have a broad acceptor substrate specificity and receive increased attention as biocatalysts for the glycosylation of small non-carbohydrate molecules using sucrose as donor substrate. However, the main glucansucrase-catalyzed reaction results in synthesis of [alpha]-glucan polysacchar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2016-09, Vol.100 (17), p.7529
Hauptverfasser: Devlamynck, Tim, te Poele, Evelien M, Meng, Xiangfeng, van Leeuwen, Sander S, Dijkhuizen, Lubbert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page 7529
container_title Applied microbiology and biotechnology
container_volume 100
creator Devlamynck, Tim
te Poele, Evelien M
Meng, Xiangfeng
van Leeuwen, Sander S
Dijkhuizen, Lubbert
description Glucansucrases have a broad acceptor substrate specificity and receive increased attention as biocatalysts for the glycosylation of small non-carbohydrate molecules using sucrose as donor substrate. However, the main glucansucrase-catalyzed reaction results in synthesis of [alpha]-glucan polysaccharides from sucrose, and this strongly impedes the efficient glycosylation of non-carbohydrate molecules and complicates downstream processing of glucosylated products. This paper reports that suppressing [alpha]-glucan synthesis by mutational engineering of the Gtf180-[DELTA]N enzyme of Lactobacillus reuteri 180 results in the construction of more efficient glycosylation biocatalysts. Gtf180-[DELTA]N mutants (L938F, L981A, and N1029M) with an impaired [alpha]-glucan synthesis displayed a substantial increase in monoglycosylation yields for several phenolic and alcoholic compounds. Kinetic analysis revealed that these mutants possess a higher affinity for the model acceptor substrate catechol but a lower affinity for its mono-[alpha]-d-glucoside product, explaining the improved monoglycosylation yields. Analysis of the available high resolution 3D crystal structure of the Gtf180-[DELTA]N protein provided a clear understanding of how mutagenesis of residues L938, L981, and N1029 impaired [alpha]-glucan synthesis, thus yielding mutants with an improved glycosylation potential.
doi_str_mv 10.1007/s00253-016-7476-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1810632959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A470454194</galeid><sourcerecordid>A470454194</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1669-3b035f9ca0f3ed1c15c70cf95df9727c776832e3812dc3cea414c025aeebd14c3</originalsourceid><addsrcrecordid>eNpt0EFrFTEQB_AgCj6rH8BbwJOH1GSTTXa9PWp9Fh4KWk8iS97sZE3JJprslj4_hx-4oQpakBwm_PnNJAwhzwU_FZybV4XzppWMC82MMprdPCAboWTDuBbqIdlwYVpm2r57TJ6UcsW5aDqtN-TXLqxgY1kh24J0tzjRcfblzfn-cvv1PU2O7i0s6WDBh7AWmnFdMHta1WuK8edxRmrjWPPKfIo1m3zESuJEXcrUz99zusaRTuEIqRyDvWN1cEyRgc2H9O04ZrsgnVNAWAOWp-SRs6Hgsz_1hHx-e3559o7tP-wuzrZ7NgmteyYPXLauB8udxFGAaMFwcH07ut40BozRnWxQdqIZQQJaJRTUNVnEw1iv8oS8-D23fvHHimUZrtKaY31yEJ3gWjZ92_9Vkw04-OjSki3MvsCwVYarVoleVXX6H1XPiLOHFNH5mt9reHmvoZoFb5bJrqUMF58-_mtvASP0k5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1810632959</pqid></control><display><type>article</type><title>Glucansucrase Gtf180-[DELTA]N of Lactobacillus reuteri 180: enzyme and reaction engineering for improved glycosylation of non-carbohydrate molecules</title><source>SpringerNature Complete Journals</source><creator>Devlamynck, Tim ; te Poele, Evelien M ; Meng, Xiangfeng ; van Leeuwen, Sander S ; Dijkhuizen, Lubbert</creator><creatorcontrib>Devlamynck, Tim ; te Poele, Evelien M ; Meng, Xiangfeng ; van Leeuwen, Sander S ; Dijkhuizen, Lubbert</creatorcontrib><description>Glucansucrases have a broad acceptor substrate specificity and receive increased attention as biocatalysts for the glycosylation of small non-carbohydrate molecules using sucrose as donor substrate. However, the main glucansucrase-catalyzed reaction results in synthesis of [alpha]-glucan polysaccharides from sucrose, and this strongly impedes the efficient glycosylation of non-carbohydrate molecules and complicates downstream processing of glucosylated products. This paper reports that suppressing [alpha]-glucan synthesis by mutational engineering of the Gtf180-[DELTA]N enzyme of Lactobacillus reuteri 180 results in the construction of more efficient glycosylation biocatalysts. Gtf180-[DELTA]N mutants (L938F, L981A, and N1029M) with an impaired [alpha]-glucan synthesis displayed a substantial increase in monoglycosylation yields for several phenolic and alcoholic compounds. Kinetic analysis revealed that these mutants possess a higher affinity for the model acceptor substrate catechol but a lower affinity for its mono-[alpha]-d-glucoside product, explaining the improved monoglycosylation yields. Analysis of the available high resolution 3D crystal structure of the Gtf180-[DELTA]N protein provided a clear understanding of how mutagenesis of residues L938, L981, and N1029 impaired [alpha]-glucan synthesis, thus yielding mutants with an improved glycosylation potential.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-016-7476-x</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Biocatalysts ; Biotechnology ; Carbohydrates ; Chemistry ; Engineering ; Enzymes ; Gene mutation ; Genetic aspects ; Glucose ; Glycosylation ; Lactobacillus ; Mutagenesis ; Observations ; Phenols ; Proteins ; Saccharides ; Sodium ; Solvents ; Studies ; Sucrose ; Yeast</subject><ispartof>Applied microbiology and biotechnology, 2016-09, Vol.100 (17), p.7529</ispartof><rights>COPYRIGHT 2016 Springer</rights><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Devlamynck, Tim</creatorcontrib><creatorcontrib>te Poele, Evelien M</creatorcontrib><creatorcontrib>Meng, Xiangfeng</creatorcontrib><creatorcontrib>van Leeuwen, Sander S</creatorcontrib><creatorcontrib>Dijkhuizen, Lubbert</creatorcontrib><title>Glucansucrase Gtf180-[DELTA]N of Lactobacillus reuteri 180: enzyme and reaction engineering for improved glycosylation of non-carbohydrate molecules</title><title>Applied microbiology and biotechnology</title><description>Glucansucrases have a broad acceptor substrate specificity and receive increased attention as biocatalysts for the glycosylation of small non-carbohydrate molecules using sucrose as donor substrate. However, the main glucansucrase-catalyzed reaction results in synthesis of [alpha]-glucan polysaccharides from sucrose, and this strongly impedes the efficient glycosylation of non-carbohydrate molecules and complicates downstream processing of glucosylated products. This paper reports that suppressing [alpha]-glucan synthesis by mutational engineering of the Gtf180-[DELTA]N enzyme of Lactobacillus reuteri 180 results in the construction of more efficient glycosylation biocatalysts. Gtf180-[DELTA]N mutants (L938F, L981A, and N1029M) with an impaired [alpha]-glucan synthesis displayed a substantial increase in monoglycosylation yields for several phenolic and alcoholic compounds. Kinetic analysis revealed that these mutants possess a higher affinity for the model acceptor substrate catechol but a lower affinity for its mono-[alpha]-d-glucoside product, explaining the improved monoglycosylation yields. Analysis of the available high resolution 3D crystal structure of the Gtf180-[DELTA]N protein provided a clear understanding of how mutagenesis of residues L938, L981, and N1029 impaired [alpha]-glucan synthesis, thus yielding mutants with an improved glycosylation potential.</description><subject>Biocatalysts</subject><subject>Biotechnology</subject><subject>Carbohydrates</subject><subject>Chemistry</subject><subject>Engineering</subject><subject>Enzymes</subject><subject>Gene mutation</subject><subject>Genetic aspects</subject><subject>Glucose</subject><subject>Glycosylation</subject><subject>Lactobacillus</subject><subject>Mutagenesis</subject><subject>Observations</subject><subject>Phenols</subject><subject>Proteins</subject><subject>Saccharides</subject><subject>Sodium</subject><subject>Solvents</subject><subject>Studies</subject><subject>Sucrose</subject><subject>Yeast</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpt0EFrFTEQB_AgCj6rH8BbwJOH1GSTTXa9PWp9Fh4KWk8iS97sZE3JJprslj4_hx-4oQpakBwm_PnNJAwhzwU_FZybV4XzppWMC82MMprdPCAboWTDuBbqIdlwYVpm2r57TJ6UcsW5aDqtN-TXLqxgY1kh24J0tzjRcfblzfn-cvv1PU2O7i0s6WDBh7AWmnFdMHta1WuK8edxRmrjWPPKfIo1m3zESuJEXcrUz99zusaRTuEIqRyDvWN1cEyRgc2H9O04ZrsgnVNAWAOWp-SRs6Hgsz_1hHx-e3559o7tP-wuzrZ7NgmteyYPXLauB8udxFGAaMFwcH07ut40BozRnWxQdqIZQQJaJRTUNVnEw1iv8oS8-D23fvHHimUZrtKaY31yEJ3gWjZ92_9Vkw04-OjSki3MvsCwVYarVoleVXX6H1XPiLOHFNH5mt9reHmvoZoFb5bJrqUMF58-_mtvASP0k5g</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Devlamynck, Tim</creator><creator>te Poele, Evelien M</creator><creator>Meng, Xiangfeng</creator><creator>van Leeuwen, Sander S</creator><creator>Dijkhuizen, Lubbert</creator><general>Springer</general><general>Springer Nature B.V</general><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20160901</creationdate><title>Glucansucrase Gtf180-[DELTA]N of Lactobacillus reuteri 180: enzyme and reaction engineering for improved glycosylation of non-carbohydrate molecules</title><author>Devlamynck, Tim ; te Poele, Evelien M ; Meng, Xiangfeng ; van Leeuwen, Sander S ; Dijkhuizen, Lubbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1669-3b035f9ca0f3ed1c15c70cf95df9727c776832e3812dc3cea414c025aeebd14c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biocatalysts</topic><topic>Biotechnology</topic><topic>Carbohydrates</topic><topic>Chemistry</topic><topic>Engineering</topic><topic>Enzymes</topic><topic>Gene mutation</topic><topic>Genetic aspects</topic><topic>Glucose</topic><topic>Glycosylation</topic><topic>Lactobacillus</topic><topic>Mutagenesis</topic><topic>Observations</topic><topic>Phenols</topic><topic>Proteins</topic><topic>Saccharides</topic><topic>Sodium</topic><topic>Solvents</topic><topic>Studies</topic><topic>Sucrose</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devlamynck, Tim</creatorcontrib><creatorcontrib>te Poele, Evelien M</creatorcontrib><creatorcontrib>Meng, Xiangfeng</creatorcontrib><creatorcontrib>van Leeuwen, Sander S</creatorcontrib><creatorcontrib>Dijkhuizen, Lubbert</creatorcontrib><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devlamynck, Tim</au><au>te Poele, Evelien M</au><au>Meng, Xiangfeng</au><au>van Leeuwen, Sander S</au><au>Dijkhuizen, Lubbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glucansucrase Gtf180-[DELTA]N of Lactobacillus reuteri 180: enzyme and reaction engineering for improved glycosylation of non-carbohydrate molecules</atitle><jtitle>Applied microbiology and biotechnology</jtitle><date>2016-09-01</date><risdate>2016</risdate><volume>100</volume><issue>17</issue><spage>7529</spage><pages>7529-</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Glucansucrases have a broad acceptor substrate specificity and receive increased attention as biocatalysts for the glycosylation of small non-carbohydrate molecules using sucrose as donor substrate. However, the main glucansucrase-catalyzed reaction results in synthesis of [alpha]-glucan polysaccharides from sucrose, and this strongly impedes the efficient glycosylation of non-carbohydrate molecules and complicates downstream processing of glucosylated products. This paper reports that suppressing [alpha]-glucan synthesis by mutational engineering of the Gtf180-[DELTA]N enzyme of Lactobacillus reuteri 180 results in the construction of more efficient glycosylation biocatalysts. Gtf180-[DELTA]N mutants (L938F, L981A, and N1029M) with an impaired [alpha]-glucan synthesis displayed a substantial increase in monoglycosylation yields for several phenolic and alcoholic compounds. Kinetic analysis revealed that these mutants possess a higher affinity for the model acceptor substrate catechol but a lower affinity for its mono-[alpha]-d-glucoside product, explaining the improved monoglycosylation yields. Analysis of the available high resolution 3D crystal structure of the Gtf180-[DELTA]N protein provided a clear understanding of how mutagenesis of residues L938, L981, and N1029 impaired [alpha]-glucan synthesis, thus yielding mutants with an improved glycosylation potential.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s00253-016-7476-x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2016-09, Vol.100 (17), p.7529
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_journals_1810632959
source SpringerNature Complete Journals
subjects Biocatalysts
Biotechnology
Carbohydrates
Chemistry
Engineering
Enzymes
Gene mutation
Genetic aspects
Glucose
Glycosylation
Lactobacillus
Mutagenesis
Observations
Phenols
Proteins
Saccharides
Sodium
Solvents
Studies
Sucrose
Yeast
title Glucansucrase Gtf180-[DELTA]N of Lactobacillus reuteri 180: enzyme and reaction engineering for improved glycosylation of non-carbohydrate molecules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A45%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glucansucrase%20Gtf180-%5BDELTA%5DN%20of%20Lactobacillus%20reuteri%20180:%20enzyme%20and%20reaction%20engineering%20for%20improved%20glycosylation%20of%20non-carbohydrate%20molecules&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Devlamynck,%20Tim&rft.date=2016-09-01&rft.volume=100&rft.issue=17&rft.spage=7529&rft.pages=7529-&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-016-7476-x&rft_dat=%3Cgale_proqu%3EA470454194%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1810632959&rft_id=info:pmid/&rft_galeid=A470454194&rfr_iscdi=true