Glucansucrase Gtf180-[DELTA]N of Lactobacillus reuteri 180: enzyme and reaction engineering for improved glycosylation of non-carbohydrate molecules
Glucansucrases have a broad acceptor substrate specificity and receive increased attention as biocatalysts for the glycosylation of small non-carbohydrate molecules using sucrose as donor substrate. However, the main glucansucrase-catalyzed reaction results in synthesis of [alpha]-glucan polysacchar...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2016-09, Vol.100 (17), p.7529 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 17 |
container_start_page | 7529 |
container_title | Applied microbiology and biotechnology |
container_volume | 100 |
creator | Devlamynck, Tim te Poele, Evelien M Meng, Xiangfeng van Leeuwen, Sander S Dijkhuizen, Lubbert |
description | Glucansucrases have a broad acceptor substrate specificity and receive increased attention as biocatalysts for the glycosylation of small non-carbohydrate molecules using sucrose as donor substrate. However, the main glucansucrase-catalyzed reaction results in synthesis of [alpha]-glucan polysaccharides from sucrose, and this strongly impedes the efficient glycosylation of non-carbohydrate molecules and complicates downstream processing of glucosylated products. This paper reports that suppressing [alpha]-glucan synthesis by mutational engineering of the Gtf180-[DELTA]N enzyme of Lactobacillus reuteri 180 results in the construction of more efficient glycosylation biocatalysts. Gtf180-[DELTA]N mutants (L938F, L981A, and N1029M) with an impaired [alpha]-glucan synthesis displayed a substantial increase in monoglycosylation yields for several phenolic and alcoholic compounds. Kinetic analysis revealed that these mutants possess a higher affinity for the model acceptor substrate catechol but a lower affinity for its mono-[alpha]-d-glucoside product, explaining the improved monoglycosylation yields. Analysis of the available high resolution 3D crystal structure of the Gtf180-[DELTA]N protein provided a clear understanding of how mutagenesis of residues L938, L981, and N1029 impaired [alpha]-glucan synthesis, thus yielding mutants with an improved glycosylation potential. |
doi_str_mv | 10.1007/s00253-016-7476-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1810632959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A470454194</galeid><sourcerecordid>A470454194</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1669-3b035f9ca0f3ed1c15c70cf95df9727c776832e3812dc3cea414c025aeebd14c3</originalsourceid><addsrcrecordid>eNpt0EFrFTEQB_AgCj6rH8BbwJOH1GSTTXa9PWp9Fh4KWk8iS97sZE3JJprslj4_hx-4oQpakBwm_PnNJAwhzwU_FZybV4XzppWMC82MMprdPCAboWTDuBbqIdlwYVpm2r57TJ6UcsW5aDqtN-TXLqxgY1kh24J0tzjRcfblzfn-cvv1PU2O7i0s6WDBh7AWmnFdMHta1WuK8edxRmrjWPPKfIo1m3zESuJEXcrUz99zusaRTuEIqRyDvWN1cEyRgc2H9O04ZrsgnVNAWAOWp-SRs6Hgsz_1hHx-e3559o7tP-wuzrZ7NgmteyYPXLauB8udxFGAaMFwcH07ut40BozRnWxQdqIZQQJaJRTUNVnEw1iv8oS8-D23fvHHimUZrtKaY31yEJ3gWjZ92_9Vkw04-OjSki3MvsCwVYarVoleVXX6H1XPiLOHFNH5mt9reHmvoZoFb5bJrqUMF58-_mtvASP0k5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1810632959</pqid></control><display><type>article</type><title>Glucansucrase Gtf180-[DELTA]N of Lactobacillus reuteri 180: enzyme and reaction engineering for improved glycosylation of non-carbohydrate molecules</title><source>SpringerNature Complete Journals</source><creator>Devlamynck, Tim ; te Poele, Evelien M ; Meng, Xiangfeng ; van Leeuwen, Sander S ; Dijkhuizen, Lubbert</creator><creatorcontrib>Devlamynck, Tim ; te Poele, Evelien M ; Meng, Xiangfeng ; van Leeuwen, Sander S ; Dijkhuizen, Lubbert</creatorcontrib><description>Glucansucrases have a broad acceptor substrate specificity and receive increased attention as biocatalysts for the glycosylation of small non-carbohydrate molecules using sucrose as donor substrate. However, the main glucansucrase-catalyzed reaction results in synthesis of [alpha]-glucan polysaccharides from sucrose, and this strongly impedes the efficient glycosylation of non-carbohydrate molecules and complicates downstream processing of glucosylated products. This paper reports that suppressing [alpha]-glucan synthesis by mutational engineering of the Gtf180-[DELTA]N enzyme of Lactobacillus reuteri 180 results in the construction of more efficient glycosylation biocatalysts. Gtf180-[DELTA]N mutants (L938F, L981A, and N1029M) with an impaired [alpha]-glucan synthesis displayed a substantial increase in monoglycosylation yields for several phenolic and alcoholic compounds. Kinetic analysis revealed that these mutants possess a higher affinity for the model acceptor substrate catechol but a lower affinity for its mono-[alpha]-d-glucoside product, explaining the improved monoglycosylation yields. Analysis of the available high resolution 3D crystal structure of the Gtf180-[DELTA]N protein provided a clear understanding of how mutagenesis of residues L938, L981, and N1029 impaired [alpha]-glucan synthesis, thus yielding mutants with an improved glycosylation potential.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-016-7476-x</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Biocatalysts ; Biotechnology ; Carbohydrates ; Chemistry ; Engineering ; Enzymes ; Gene mutation ; Genetic aspects ; Glucose ; Glycosylation ; Lactobacillus ; Mutagenesis ; Observations ; Phenols ; Proteins ; Saccharides ; Sodium ; Solvents ; Studies ; Sucrose ; Yeast</subject><ispartof>Applied microbiology and biotechnology, 2016-09, Vol.100 (17), p.7529</ispartof><rights>COPYRIGHT 2016 Springer</rights><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Devlamynck, Tim</creatorcontrib><creatorcontrib>te Poele, Evelien M</creatorcontrib><creatorcontrib>Meng, Xiangfeng</creatorcontrib><creatorcontrib>van Leeuwen, Sander S</creatorcontrib><creatorcontrib>Dijkhuizen, Lubbert</creatorcontrib><title>Glucansucrase Gtf180-[DELTA]N of Lactobacillus reuteri 180: enzyme and reaction engineering for improved glycosylation of non-carbohydrate molecules</title><title>Applied microbiology and biotechnology</title><description>Glucansucrases have a broad acceptor substrate specificity and receive increased attention as biocatalysts for the glycosylation of small non-carbohydrate molecules using sucrose as donor substrate. However, the main glucansucrase-catalyzed reaction results in synthesis of [alpha]-glucan polysaccharides from sucrose, and this strongly impedes the efficient glycosylation of non-carbohydrate molecules and complicates downstream processing of glucosylated products. This paper reports that suppressing [alpha]-glucan synthesis by mutational engineering of the Gtf180-[DELTA]N enzyme of Lactobacillus reuteri 180 results in the construction of more efficient glycosylation biocatalysts. Gtf180-[DELTA]N mutants (L938F, L981A, and N1029M) with an impaired [alpha]-glucan synthesis displayed a substantial increase in monoglycosylation yields for several phenolic and alcoholic compounds. Kinetic analysis revealed that these mutants possess a higher affinity for the model acceptor substrate catechol but a lower affinity for its mono-[alpha]-d-glucoside product, explaining the improved monoglycosylation yields. Analysis of the available high resolution 3D crystal structure of the Gtf180-[DELTA]N protein provided a clear understanding of how mutagenesis of residues L938, L981, and N1029 impaired [alpha]-glucan synthesis, thus yielding mutants with an improved glycosylation potential.</description><subject>Biocatalysts</subject><subject>Biotechnology</subject><subject>Carbohydrates</subject><subject>Chemistry</subject><subject>Engineering</subject><subject>Enzymes</subject><subject>Gene mutation</subject><subject>Genetic aspects</subject><subject>Glucose</subject><subject>Glycosylation</subject><subject>Lactobacillus</subject><subject>Mutagenesis</subject><subject>Observations</subject><subject>Phenols</subject><subject>Proteins</subject><subject>Saccharides</subject><subject>Sodium</subject><subject>Solvents</subject><subject>Studies</subject><subject>Sucrose</subject><subject>Yeast</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpt0EFrFTEQB_AgCj6rH8BbwJOH1GSTTXa9PWp9Fh4KWk8iS97sZE3JJprslj4_hx-4oQpakBwm_PnNJAwhzwU_FZybV4XzppWMC82MMprdPCAboWTDuBbqIdlwYVpm2r57TJ6UcsW5aDqtN-TXLqxgY1kh24J0tzjRcfblzfn-cvv1PU2O7i0s6WDBh7AWmnFdMHta1WuK8edxRmrjWPPKfIo1m3zESuJEXcrUz99zusaRTuEIqRyDvWN1cEyRgc2H9O04ZrsgnVNAWAOWp-SRs6Hgsz_1hHx-e3559o7tP-wuzrZ7NgmteyYPXLauB8udxFGAaMFwcH07ut40BozRnWxQdqIZQQJaJRTUNVnEw1iv8oS8-D23fvHHimUZrtKaY31yEJ3gWjZ92_9Vkw04-OjSki3MvsCwVYarVoleVXX6H1XPiLOHFNH5mt9reHmvoZoFb5bJrqUMF58-_mtvASP0k5g</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Devlamynck, Tim</creator><creator>te Poele, Evelien M</creator><creator>Meng, Xiangfeng</creator><creator>van Leeuwen, Sander S</creator><creator>Dijkhuizen, Lubbert</creator><general>Springer</general><general>Springer Nature B.V</general><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20160901</creationdate><title>Glucansucrase Gtf180-[DELTA]N of Lactobacillus reuteri 180: enzyme and reaction engineering for improved glycosylation of non-carbohydrate molecules</title><author>Devlamynck, Tim ; te Poele, Evelien M ; Meng, Xiangfeng ; van Leeuwen, Sander S ; Dijkhuizen, Lubbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1669-3b035f9ca0f3ed1c15c70cf95df9727c776832e3812dc3cea414c025aeebd14c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biocatalysts</topic><topic>Biotechnology</topic><topic>Carbohydrates</topic><topic>Chemistry</topic><topic>Engineering</topic><topic>Enzymes</topic><topic>Gene mutation</topic><topic>Genetic aspects</topic><topic>Glucose</topic><topic>Glycosylation</topic><topic>Lactobacillus</topic><topic>Mutagenesis</topic><topic>Observations</topic><topic>Phenols</topic><topic>Proteins</topic><topic>Saccharides</topic><topic>Sodium</topic><topic>Solvents</topic><topic>Studies</topic><topic>Sucrose</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devlamynck, Tim</creatorcontrib><creatorcontrib>te Poele, Evelien M</creatorcontrib><creatorcontrib>Meng, Xiangfeng</creatorcontrib><creatorcontrib>van Leeuwen, Sander S</creatorcontrib><creatorcontrib>Dijkhuizen, Lubbert</creatorcontrib><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devlamynck, Tim</au><au>te Poele, Evelien M</au><au>Meng, Xiangfeng</au><au>van Leeuwen, Sander S</au><au>Dijkhuizen, Lubbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glucansucrase Gtf180-[DELTA]N of Lactobacillus reuteri 180: enzyme and reaction engineering for improved glycosylation of non-carbohydrate molecules</atitle><jtitle>Applied microbiology and biotechnology</jtitle><date>2016-09-01</date><risdate>2016</risdate><volume>100</volume><issue>17</issue><spage>7529</spage><pages>7529-</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Glucansucrases have a broad acceptor substrate specificity and receive increased attention as biocatalysts for the glycosylation of small non-carbohydrate molecules using sucrose as donor substrate. However, the main glucansucrase-catalyzed reaction results in synthesis of [alpha]-glucan polysaccharides from sucrose, and this strongly impedes the efficient glycosylation of non-carbohydrate molecules and complicates downstream processing of glucosylated products. This paper reports that suppressing [alpha]-glucan synthesis by mutational engineering of the Gtf180-[DELTA]N enzyme of Lactobacillus reuteri 180 results in the construction of more efficient glycosylation biocatalysts. Gtf180-[DELTA]N mutants (L938F, L981A, and N1029M) with an impaired [alpha]-glucan synthesis displayed a substantial increase in monoglycosylation yields for several phenolic and alcoholic compounds. Kinetic analysis revealed that these mutants possess a higher affinity for the model acceptor substrate catechol but a lower affinity for its mono-[alpha]-d-glucoside product, explaining the improved monoglycosylation yields. Analysis of the available high resolution 3D crystal structure of the Gtf180-[DELTA]N protein provided a clear understanding of how mutagenesis of residues L938, L981, and N1029 impaired [alpha]-glucan synthesis, thus yielding mutants with an improved glycosylation potential.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s00253-016-7476-x</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2016-09, Vol.100 (17), p.7529 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_journals_1810632959 |
source | SpringerNature Complete Journals |
subjects | Biocatalysts Biotechnology Carbohydrates Chemistry Engineering Enzymes Gene mutation Genetic aspects Glucose Glycosylation Lactobacillus Mutagenesis Observations Phenols Proteins Saccharides Sodium Solvents Studies Sucrose Yeast |
title | Glucansucrase Gtf180-[DELTA]N of Lactobacillus reuteri 180: enzyme and reaction engineering for improved glycosylation of non-carbohydrate molecules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A45%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glucansucrase%20Gtf180-%5BDELTA%5DN%20of%20Lactobacillus%20reuteri%20180:%20enzyme%20and%20reaction%20engineering%20for%20improved%20glycosylation%20of%20non-carbohydrate%20molecules&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Devlamynck,%20Tim&rft.date=2016-09-01&rft.volume=100&rft.issue=17&rft.spage=7529&rft.pages=7529-&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-016-7476-x&rft_dat=%3Cgale_proqu%3EA470454194%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1810632959&rft_id=info:pmid/&rft_galeid=A470454194&rfr_iscdi=true |