Mixed-Halide CH3NH3PbI3−xXx (X=Cl, Br, I) Perovskites: Vapor-Assisted Solution Deposition and Application as Solar Cell Absorbers

There have been recent reports on the formation of single‐halide perovskites, CH3NH3PbX3 (X=Cl, Br, I), by means of vapor‐assisted solution processing. Herein, the successful formation of mixed‐halide perovskites (CH3NH3PbI3−xXx) by means of a vapor‐assisted solution method at ambient atmosphere is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemphyschem 2016-08, Vol.17 (15), p.2382-2388
Hauptverfasser: Sedighi, Rahime, Tajabadi, Fariba, Shahbazi, Saeed, Gholipour, Somayeh, Taghavinia, Nima
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2388
container_issue 15
container_start_page 2382
container_title Chemphyschem
container_volume 17
creator Sedighi, Rahime
Tajabadi, Fariba
Shahbazi, Saeed
Gholipour, Somayeh
Taghavinia, Nima
description There have been recent reports on the formation of single‐halide perovskites, CH3NH3PbX3 (X=Cl, Br, I), by means of vapor‐assisted solution processing. Herein, the successful formation of mixed‐halide perovskites (CH3NH3PbI3−xXx) by means of a vapor‐assisted solution method at ambient atmosphere is reported. The perovskite films are synthesized by exposing PbI2 film to CH3NH3X (X=I, Br, or Cl) vapor. The prepared perovskite films have uniform surfaces with good coverage, as confirmed by SEM images. The inclusion of chlorine and bromine into the structure leads to a lower temperature and shorter reaction time for optimum perovskite film formation. In the case of CH3NH3PbI3−xClx, the optimum reaction temperature is reduced to 100 °C, and the resulting phases are CH3NH3PbI3 (with trace Cl) and CH3NH3PbCl3 with a ratio of about 2:1. In the case of CH3NH3PbI3−xBrx, single‐phase CH3NH3PbI2Br is formed in a considerably shorter reaction time than that of CH3NH3PbI3. The mesostructured perovskite solar cells based on CH3NH3PbI3 films show the best optimal power conversion efficiency of 13.5 %, whereas for CH3NH3PbI3−xClx and CH3NH3PbI3−xBrx the best recorded efficiencies are 11.6 and 10.5 %, respectively. In a puff of gas: Perovskite films are synthesized by exposing PbI2 film to CH3NH3X (X=I, Br or Cl) vapor. Inclusion of Cl or Br into the structure leads to smaller grains and lower surface roughness (see figure). An efficiency of 13 % can be achieved by a solar cell fabricated with CH3NH3PbI3 outside the glove box under ambient conditions. The efficiency is lower for CH3NH3PbI3−xClx (11 %) and CH3NH3PbI3−xBrx (10 %), whereas the VOC values are larger for these devices.
doi_str_mv 10.1002/cphc.201600230
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1810534662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4143676381</sourcerecordid><originalsourceid>FETCH-LOGICAL-g4480-192db0f7bca58128c3dd5a36499caa6004d212cf4edb67cef8cb7d30faa094e83</originalsourceid><addsrcrecordid>eNo9kDtPwzAUhSMEEqWwMltiAakpduy8kBhCgKaolEo82s1ybAdMQxPsFtqZhZmfyC8hIVWne450zr26n2UdIthFEDqnvHzhXQcirzIYblktRHBo-x5B22tNHOzuWnvGvEIIA-ijlvV1q5ZS2AnLlZAgTvAwwaO0j3-_f5aTJTienMd5B1zoDuifgJHUxYeZqrk0Z-CJlYW2I2OUmUsB7ot8MVfFDFzKsjDqX7KZAFFZ5oqzxps6xjSIZZ6DKDWFTqU2-9ZOxnIjD9azbT1eXz3EiT246_XjaGA_ExJAG4WOSGHmp5y5AXICjoVwGfZIGHLGqq-JcJDDMyJF6vlcZgFPfYFhxhgMiQxw2zpq9pa6eF9IM6evxULPqpMUBQi6mHieU6XCJvWpcrmipVZvTK8ogrSmTGvKdEOZxqMk3riqazfdmsly02V6Sj0f-y4dD3t0PAgDl9zEFOE_AbWCTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1810534662</pqid></control><display><type>article</type><title>Mixed-Halide CH3NH3PbI3−xXx (X=Cl, Br, I) Perovskites: Vapor-Assisted Solution Deposition and Application as Solar Cell Absorbers</title><source>Wiley-Blackwell Journals</source><creator>Sedighi, Rahime ; Tajabadi, Fariba ; Shahbazi, Saeed ; Gholipour, Somayeh ; Taghavinia, Nima</creator><creatorcontrib>Sedighi, Rahime ; Tajabadi, Fariba ; Shahbazi, Saeed ; Gholipour, Somayeh ; Taghavinia, Nima</creatorcontrib><description>There have been recent reports on the formation of single‐halide perovskites, CH3NH3PbX3 (X=Cl, Br, I), by means of vapor‐assisted solution processing. Herein, the successful formation of mixed‐halide perovskites (CH3NH3PbI3−xXx) by means of a vapor‐assisted solution method at ambient atmosphere is reported. The perovskite films are synthesized by exposing PbI2 film to CH3NH3X (X=I, Br, or Cl) vapor. The prepared perovskite films have uniform surfaces with good coverage, as confirmed by SEM images. The inclusion of chlorine and bromine into the structure leads to a lower temperature and shorter reaction time for optimum perovskite film formation. In the case of CH3NH3PbI3−xClx, the optimum reaction temperature is reduced to 100 °C, and the resulting phases are CH3NH3PbI3 (with trace Cl) and CH3NH3PbCl3 with a ratio of about 2:1. In the case of CH3NH3PbI3−xBrx, single‐phase CH3NH3PbI2Br is formed in a considerably shorter reaction time than that of CH3NH3PbI3. The mesostructured perovskite solar cells based on CH3NH3PbI3 films show the best optimal power conversion efficiency of 13.5 %, whereas for CH3NH3PbI3−xClx and CH3NH3PbI3−xBrx the best recorded efficiencies are 11.6 and 10.5 %, respectively. In a puff of gas: Perovskite films are synthesized by exposing PbI2 film to CH3NH3X (X=I, Br or Cl) vapor. Inclusion of Cl or Br into the structure leads to smaller grains and lower surface roughness (see figure). An efficiency of 13 % can be achieved by a solar cell fabricated with CH3NH3PbI3 outside the glove box under ambient conditions. The efficiency is lower for CH3NH3PbI3−xClx (11 %) and CH3NH3PbI3−xBrx (10 %), whereas the VOC values are larger for these devices.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.201600230</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>electrochemistry ; perovskite phases ; solar cells ; thin films ; vapor-assisted solution deposition</subject><ispartof>Chemphyschem, 2016-08, Vol.17 (15), p.2382-2388</ispartof><rights>2016 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0121-8469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcphc.201600230$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcphc.201600230$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Sedighi, Rahime</creatorcontrib><creatorcontrib>Tajabadi, Fariba</creatorcontrib><creatorcontrib>Shahbazi, Saeed</creatorcontrib><creatorcontrib>Gholipour, Somayeh</creatorcontrib><creatorcontrib>Taghavinia, Nima</creatorcontrib><title>Mixed-Halide CH3NH3PbI3−xXx (X=Cl, Br, I) Perovskites: Vapor-Assisted Solution Deposition and Application as Solar Cell Absorbers</title><title>Chemphyschem</title><addtitle>ChemPhysChem</addtitle><description>There have been recent reports on the formation of single‐halide perovskites, CH3NH3PbX3 (X=Cl, Br, I), by means of vapor‐assisted solution processing. Herein, the successful formation of mixed‐halide perovskites (CH3NH3PbI3−xXx) by means of a vapor‐assisted solution method at ambient atmosphere is reported. The perovskite films are synthesized by exposing PbI2 film to CH3NH3X (X=I, Br, or Cl) vapor. The prepared perovskite films have uniform surfaces with good coverage, as confirmed by SEM images. The inclusion of chlorine and bromine into the structure leads to a lower temperature and shorter reaction time for optimum perovskite film formation. In the case of CH3NH3PbI3−xClx, the optimum reaction temperature is reduced to 100 °C, and the resulting phases are CH3NH3PbI3 (with trace Cl) and CH3NH3PbCl3 with a ratio of about 2:1. In the case of CH3NH3PbI3−xBrx, single‐phase CH3NH3PbI2Br is formed in a considerably shorter reaction time than that of CH3NH3PbI3. The mesostructured perovskite solar cells based on CH3NH3PbI3 films show the best optimal power conversion efficiency of 13.5 %, whereas for CH3NH3PbI3−xClx and CH3NH3PbI3−xBrx the best recorded efficiencies are 11.6 and 10.5 %, respectively. In a puff of gas: Perovskite films are synthesized by exposing PbI2 film to CH3NH3X (X=I, Br or Cl) vapor. Inclusion of Cl or Br into the structure leads to smaller grains and lower surface roughness (see figure). An efficiency of 13 % can be achieved by a solar cell fabricated with CH3NH3PbI3 outside the glove box under ambient conditions. The efficiency is lower for CH3NH3PbI3−xClx (11 %) and CH3NH3PbI3−xBrx (10 %), whereas the VOC values are larger for these devices.</description><subject>electrochemistry</subject><subject>perovskite phases</subject><subject>solar cells</subject><subject>thin films</subject><subject>vapor-assisted solution deposition</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kDtPwzAUhSMEEqWwMltiAakpduy8kBhCgKaolEo82s1ybAdMQxPsFtqZhZmfyC8hIVWne450zr26n2UdIthFEDqnvHzhXQcirzIYblktRHBo-x5B22tNHOzuWnvGvEIIA-ijlvV1q5ZS2AnLlZAgTvAwwaO0j3-_f5aTJTienMd5B1zoDuifgJHUxYeZqrk0Z-CJlYW2I2OUmUsB7ot8MVfFDFzKsjDqX7KZAFFZ5oqzxps6xjSIZZ6DKDWFTqU2-9ZOxnIjD9azbT1eXz3EiT246_XjaGA_ExJAG4WOSGHmp5y5AXICjoVwGfZIGHLGqq-JcJDDMyJF6vlcZgFPfYFhxhgMiQxw2zpq9pa6eF9IM6evxULPqpMUBQi6mHieU6XCJvWpcrmipVZvTK8ogrSmTGvKdEOZxqMk3riqazfdmsly02V6Sj0f-y4dD3t0PAgDl9zEFOE_AbWCTA</recordid><startdate>20160804</startdate><enddate>20160804</enddate><creator>Sedighi, Rahime</creator><creator>Tajabadi, Fariba</creator><creator>Shahbazi, Saeed</creator><creator>Gholipour, Somayeh</creator><creator>Taghavinia, Nima</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0003-0121-8469</orcidid></search><sort><creationdate>20160804</creationdate><title>Mixed-Halide CH3NH3PbI3−xXx (X=Cl, Br, I) Perovskites: Vapor-Assisted Solution Deposition and Application as Solar Cell Absorbers</title><author>Sedighi, Rahime ; Tajabadi, Fariba ; Shahbazi, Saeed ; Gholipour, Somayeh ; Taghavinia, Nima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g4480-192db0f7bca58128c3dd5a36499caa6004d212cf4edb67cef8cb7d30faa094e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>electrochemistry</topic><topic>perovskite phases</topic><topic>solar cells</topic><topic>thin films</topic><topic>vapor-assisted solution deposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sedighi, Rahime</creatorcontrib><creatorcontrib>Tajabadi, Fariba</creatorcontrib><creatorcontrib>Shahbazi, Saeed</creatorcontrib><creatorcontrib>Gholipour, Somayeh</creatorcontrib><creatorcontrib>Taghavinia, Nima</creatorcontrib><collection>Istex</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sedighi, Rahime</au><au>Tajabadi, Fariba</au><au>Shahbazi, Saeed</au><au>Gholipour, Somayeh</au><au>Taghavinia, Nima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed-Halide CH3NH3PbI3−xXx (X=Cl, Br, I) Perovskites: Vapor-Assisted Solution Deposition and Application as Solar Cell Absorbers</atitle><jtitle>Chemphyschem</jtitle><addtitle>ChemPhysChem</addtitle><date>2016-08-04</date><risdate>2016</risdate><volume>17</volume><issue>15</issue><spage>2382</spage><epage>2388</epage><pages>2382-2388</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>There have been recent reports on the formation of single‐halide perovskites, CH3NH3PbX3 (X=Cl, Br, I), by means of vapor‐assisted solution processing. Herein, the successful formation of mixed‐halide perovskites (CH3NH3PbI3−xXx) by means of a vapor‐assisted solution method at ambient atmosphere is reported. The perovskite films are synthesized by exposing PbI2 film to CH3NH3X (X=I, Br, or Cl) vapor. The prepared perovskite films have uniform surfaces with good coverage, as confirmed by SEM images. The inclusion of chlorine and bromine into the structure leads to a lower temperature and shorter reaction time for optimum perovskite film formation. In the case of CH3NH3PbI3−xClx, the optimum reaction temperature is reduced to 100 °C, and the resulting phases are CH3NH3PbI3 (with trace Cl) and CH3NH3PbCl3 with a ratio of about 2:1. In the case of CH3NH3PbI3−xBrx, single‐phase CH3NH3PbI2Br is formed in a considerably shorter reaction time than that of CH3NH3PbI3. The mesostructured perovskite solar cells based on CH3NH3PbI3 films show the best optimal power conversion efficiency of 13.5 %, whereas for CH3NH3PbI3−xClx and CH3NH3PbI3−xBrx the best recorded efficiencies are 11.6 and 10.5 %, respectively. In a puff of gas: Perovskite films are synthesized by exposing PbI2 film to CH3NH3X (X=I, Br or Cl) vapor. Inclusion of Cl or Br into the structure leads to smaller grains and lower surface roughness (see figure). An efficiency of 13 % can be achieved by a solar cell fabricated with CH3NH3PbI3 outside the glove box under ambient conditions. The efficiency is lower for CH3NH3PbI3−xClx (11 %) and CH3NH3PbI3−xBrx (10 %), whereas the VOC values are larger for these devices.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/cphc.201600230</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0121-8469</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1439-4235
ispartof Chemphyschem, 2016-08, Vol.17 (15), p.2382-2388
issn 1439-4235
1439-7641
language eng
recordid cdi_proquest_journals_1810534662
source Wiley-Blackwell Journals
subjects electrochemistry
perovskite phases
solar cells
thin films
vapor-assisted solution deposition
title Mixed-Halide CH3NH3PbI3−xXx (X=Cl, Br, I) Perovskites: Vapor-Assisted Solution Deposition and Application as Solar Cell Absorbers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A55%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed-Halide%20CH3NH3PbI3%E2%88%92xXx%20(X=Cl,%20Br,%20I)%20Perovskites:%20Vapor-Assisted%20Solution%20Deposition%20and%20Application%20as%20Solar%20Cell%20Absorbers&rft.jtitle=Chemphyschem&rft.au=Sedighi,%20Rahime&rft.date=2016-08-04&rft.volume=17&rft.issue=15&rft.spage=2382&rft.epage=2388&rft.pages=2382-2388&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.201600230&rft_dat=%3Cproquest_wiley%3E4143676381%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1810534662&rft_id=info:pmid/&rfr_iscdi=true