Generating a Variety of Backchannel Forms Based on Linguistic and Prosodic Features for Attentive Listening Agents
There is a growing interest in conversation agents and robots which conduct attentive listening. However, the current systems always generate the same or limited forms of backchannels every time, giving a monotonous impression. This study investigates the generation of a variety of backchannel forms...
Gespeichert in:
Veröffentlicht in: | Transactions of the Japanese Society for Artificial Intelligence 2016/07/01, Vol.31(4), pp.C-G31_1-10 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 4 |
container_start_page | C-G31_1 |
container_title | Transactions of the Japanese Society for Artificial Intelligence |
container_volume | 31 |
creator | Yamaguchi, Takashi Inoue, Koji Koichiro, Yoshino Takanashi, Katsuya Ward, Nigel G. Kawahara, Tatsuya |
description | There is a growing interest in conversation agents and robots which conduct attentive listening. However, the current systems always generate the same or limited forms of backchannels every time, giving a monotonous impression. This study investigates the generation of a variety of backchannel forms appropriate for the dialogue context, using the corpus of counseling dialogue. At first, we annotate all acceptable backchannel form categories considering the permissible variation in backchannels. Second, we analyze how the morphological form of backchannels relates to linguistic features of the preceding utterance such as the utterance boundary type and the linguistic complexity. Based on this analysis, we conduct machine learning to predict backchannel form from the linguistic and prosodic features of the preceding context. This model outperformed a baseline which always outputs the same form of backchannels and another baseline which randomly generates backchannels. Finally, subjective evaluations by human listeners show that the proposed method generates backchannels more naturally and gives a feeling of understanding and empathy. |
doi_str_mv | 10.1527/tjsai.C-G31 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1809142493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4139308641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3411-24af3f4b8911765d0754277a5da025bb74801bc19d3e87aaa84504a89cf2f64c3</originalsourceid><addsrcrecordid>eNo9kE1PAyEQQInRxKb25B8g8WhWYWHL7nHd2GrSRA_qlcyyUKktW4E16b-XfqQXmBkezPAQuqXkgRa5eIyrAPahyeaMXqARZXyalYSRy1NMBOXXaBKCbQmhOeOUFCPk59ppD9G6JQb8Bd7quMO9wU-gftQ3OKfXeNb7TUiVoDvcO7xI8GBDtAqD6_C770PfpWSmIQ5eB2x6j-sYtYv2Tyc8pHDfoF6mUrhBVwbWQU9O-xh9zp4_mpds8TZ_bepFptJsNMs5GGZ4W1aUimnREVHwXAgoOiB50baCl4S2ilYd06UAgJIXhENZKZObKVdsjO6O7259_zvoEOWqH7xLLSUtSUV5ziuWqPsjpdI3gtdGbr3dgN9JSuTeqzx4lY1MXhNdH-lViLDUZxZ8srHWJ5ZRyffL4c75LNn0Ujv2DyMIhA4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1809142493</pqid></control><display><type>article</type><title>Generating a Variety of Backchannel Forms Based on Linguistic and Prosodic Features for Attentive Listening Agents</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><creator>Yamaguchi, Takashi ; Inoue, Koji ; Koichiro, Yoshino ; Takanashi, Katsuya ; Ward, Nigel G. ; Kawahara, Tatsuya</creator><creatorcontrib>Yamaguchi, Takashi ; Inoue, Koji ; Koichiro, Yoshino ; Takanashi, Katsuya ; Ward, Nigel G. ; Kawahara, Tatsuya</creatorcontrib><description>There is a growing interest in conversation agents and robots which conduct attentive listening. However, the current systems always generate the same or limited forms of backchannels every time, giving a monotonous impression. This study investigates the generation of a variety of backchannel forms appropriate for the dialogue context, using the corpus of counseling dialogue. At first, we annotate all acceptable backchannel form categories considering the permissible variation in backchannels. Second, we analyze how the morphological form of backchannels relates to linguistic features of the preceding utterance such as the utterance boundary type and the linguistic complexity. Based on this analysis, we conduct machine learning to predict backchannel form from the linguistic and prosodic features of the preceding context. This model outperformed a baseline which always outputs the same form of backchannels and another baseline which randomly generates backchannels. Finally, subjective evaluations by human listeners show that the proposed method generates backchannels more naturally and gives a feeling of understanding and empathy.</description><identifier>ISSN: 1346-0714</identifier><identifier>EISSN: 1346-8030</identifier><identifier>DOI: 10.1527/tjsai.C-G31</identifier><language>eng ; jpn</language><publisher>Tokyo: The Japanese Society for Artificial Intelligence</publisher><subject>attentive listening ; backchannel ; conversation agent ; spoken dialogue system</subject><ispartof>Transactions of the Japanese Society for Artificial Intelligence, 2016/07/01, Vol.31(4), pp.C-G31_1-10</ispartof><rights>The Japanese Society for Artificial Intelligence 2016</rights><rights>Copyright Japan Science and Technology Agency 2016</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3411-24af3f4b8911765d0754277a5da025bb74801bc19d3e87aaa84504a89cf2f64c3</citedby><cites>FETCH-LOGICAL-c3411-24af3f4b8911765d0754277a5da025bb74801bc19d3e87aaa84504a89cf2f64c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Yamaguchi, Takashi</creatorcontrib><creatorcontrib>Inoue, Koji</creatorcontrib><creatorcontrib>Koichiro, Yoshino</creatorcontrib><creatorcontrib>Takanashi, Katsuya</creatorcontrib><creatorcontrib>Ward, Nigel G.</creatorcontrib><creatorcontrib>Kawahara, Tatsuya</creatorcontrib><title>Generating a Variety of Backchannel Forms Based on Linguistic and Prosodic Features for Attentive Listening Agents</title><title>Transactions of the Japanese Society for Artificial Intelligence</title><description>There is a growing interest in conversation agents and robots which conduct attentive listening. However, the current systems always generate the same or limited forms of backchannels every time, giving a monotonous impression. This study investigates the generation of a variety of backchannel forms appropriate for the dialogue context, using the corpus of counseling dialogue. At first, we annotate all acceptable backchannel form categories considering the permissible variation in backchannels. Second, we analyze how the morphological form of backchannels relates to linguistic features of the preceding utterance such as the utterance boundary type and the linguistic complexity. Based on this analysis, we conduct machine learning to predict backchannel form from the linguistic and prosodic features of the preceding context. This model outperformed a baseline which always outputs the same form of backchannels and another baseline which randomly generates backchannels. Finally, subjective evaluations by human listeners show that the proposed method generates backchannels more naturally and gives a feeling of understanding and empathy.</description><subject>attentive listening</subject><subject>backchannel</subject><subject>conversation agent</subject><subject>spoken dialogue system</subject><issn>1346-0714</issn><issn>1346-8030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PAyEQQInRxKb25B8g8WhWYWHL7nHd2GrSRA_qlcyyUKktW4E16b-XfqQXmBkezPAQuqXkgRa5eIyrAPahyeaMXqARZXyalYSRy1NMBOXXaBKCbQmhOeOUFCPk59ppD9G6JQb8Bd7quMO9wU-gftQ3OKfXeNb7TUiVoDvcO7xI8GBDtAqD6_C770PfpWSmIQ5eB2x6j-sYtYv2Tyc8pHDfoF6mUrhBVwbWQU9O-xh9zp4_mpds8TZ_bepFptJsNMs5GGZ4W1aUimnREVHwXAgoOiB50baCl4S2ilYd06UAgJIXhENZKZObKVdsjO6O7259_zvoEOWqH7xLLSUtSUV5ziuWqPsjpdI3gtdGbr3dgN9JSuTeqzx4lY1MXhNdH-lViLDUZxZ8srHWJ5ZRyffL4c75LNn0Ujv2DyMIhA4</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Yamaguchi, Takashi</creator><creator>Inoue, Koji</creator><creator>Koichiro, Yoshino</creator><creator>Takanashi, Katsuya</creator><creator>Ward, Nigel G.</creator><creator>Kawahara, Tatsuya</creator><general>The Japanese Society for Artificial Intelligence</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2016</creationdate><title>Generating a Variety of Backchannel Forms Based on Linguistic and Prosodic Features for Attentive Listening Agents</title><author>Yamaguchi, Takashi ; Inoue, Koji ; Koichiro, Yoshino ; Takanashi, Katsuya ; Ward, Nigel G. ; Kawahara, Tatsuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3411-24af3f4b8911765d0754277a5da025bb74801bc19d3e87aaa84504a89cf2f64c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2016</creationdate><topic>attentive listening</topic><topic>backchannel</topic><topic>conversation agent</topic><topic>spoken dialogue system</topic><toplevel>online_resources</toplevel><creatorcontrib>Yamaguchi, Takashi</creatorcontrib><creatorcontrib>Inoue, Koji</creatorcontrib><creatorcontrib>Koichiro, Yoshino</creatorcontrib><creatorcontrib>Takanashi, Katsuya</creatorcontrib><creatorcontrib>Ward, Nigel G.</creatorcontrib><creatorcontrib>Kawahara, Tatsuya</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Transactions of the Japanese Society for Artificial Intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamaguchi, Takashi</au><au>Inoue, Koji</au><au>Koichiro, Yoshino</au><au>Takanashi, Katsuya</au><au>Ward, Nigel G.</au><au>Kawahara, Tatsuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generating a Variety of Backchannel Forms Based on Linguistic and Prosodic Features for Attentive Listening Agents</atitle><jtitle>Transactions of the Japanese Society for Artificial Intelligence</jtitle><date>2016</date><risdate>2016</risdate><volume>31</volume><issue>4</issue><spage>C-G31_1</spage><epage>10</epage><pages>C-G31_1-10</pages><issn>1346-0714</issn><eissn>1346-8030</eissn><abstract>There is a growing interest in conversation agents and robots which conduct attentive listening. However, the current systems always generate the same or limited forms of backchannels every time, giving a monotonous impression. This study investigates the generation of a variety of backchannel forms appropriate for the dialogue context, using the corpus of counseling dialogue. At first, we annotate all acceptable backchannel form categories considering the permissible variation in backchannels. Second, we analyze how the morphological form of backchannels relates to linguistic features of the preceding utterance such as the utterance boundary type and the linguistic complexity. Based on this analysis, we conduct machine learning to predict backchannel form from the linguistic and prosodic features of the preceding context. This model outperformed a baseline which always outputs the same form of backchannels and another baseline which randomly generates backchannels. Finally, subjective evaluations by human listeners show that the proposed method generates backchannels more naturally and gives a feeling of understanding and empathy.</abstract><cop>Tokyo</cop><pub>The Japanese Society for Artificial Intelligence</pub><doi>10.1527/tjsai.C-G31</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1346-0714 |
ispartof | Transactions of the Japanese Society for Artificial Intelligence, 2016/07/01, Vol.31(4), pp.C-G31_1-10 |
issn | 1346-0714 1346-8030 |
language | eng ; jpn |
recordid | cdi_proquest_journals_1809142493 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese |
subjects | attentive listening backchannel conversation agent spoken dialogue system |
title | Generating a Variety of Backchannel Forms Based on Linguistic and Prosodic Features for Attentive Listening Agents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A21%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generating%20a%20Variety%20of%20Backchannel%20Forms%20Based%20on%20Linguistic%20and%20Prosodic%20Features%20for%20Attentive%20Listening%20Agents&rft.jtitle=Transactions%20of%20the%20Japanese%20Society%20for%20Artificial%20Intelligence&rft.au=Yamaguchi,%20Takashi&rft.date=2016&rft.volume=31&rft.issue=4&rft.spage=C-G31_1&rft.epage=10&rft.pages=C-G31_1-10&rft.issn=1346-0714&rft.eissn=1346-8030&rft_id=info:doi/10.1527/tjsai.C-G31&rft_dat=%3Cproquest_cross%3E4139308641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1809142493&rft_id=info:pmid/&rfr_iscdi=true |