Signals on Graphs: Uncertainty Principle and Sampling
In many applications, the observations can be represented as a signal defined over the vertices of a graph. The analysis of such signals requires the extension of standard signal processing tools. In this paper, first, we provide a class of graph signals that are maximally concentrated on the graph...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2016-09, Vol.64 (18), p.4845-4860 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4860 |
---|---|
container_issue | 18 |
container_start_page | 4845 |
container_title | IEEE transactions on signal processing |
container_volume | 64 |
creator | Tsitsvero, Mikhail Barbarossa, Sergio Di Lorenzo, Paolo |
description | In many applications, the observations can be represented as a signal defined over the vertices of a graph. The analysis of such signals requires the extension of standard signal processing tools. In this paper, first, we provide a class of graph signals that are maximally concentrated on the graph domain and on its dual. Then, building on this framework, we derive an uncertainty principle for graph signals and illustrate the conditions for the recovery of band-limited signals from a subset of samples. We show an interesting link between uncertainty principle and sampling and propose alternative signal recovery algorithms, including a generalization to frame-based reconstruction methods. After showing that the performance of signal recovery algorithms is significantly affected by the location of samples, we suggest and compare a few alternative sampling strategies. Finally, we provide the conditions for perfect recovery of a useful signal corrupted by sparse noise, showing that this problem is also intrinsically related to vertex-frequency localization properties. |
doi_str_mv | 10.1109/TSP.2016.2573748 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1808974239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7480396</ieee_id><sourcerecordid>4138056561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-d634a62f345c0f57d2a6bd416f946fa83350d96e5f843c82bc58b1ee028d59723</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC562T78SbFK1CwUJb8BbSbFK3tNk12R7677ulxdO8MM87DA9CjxhGGIN-WcxnIwJYjAiXVDJ1hQZYM1wCk-K6z8BpyZX8uUV3OW8AMGNaDBCf1-tot7loYjFJtv3Nr8UyOp86W8fuUMxSHV3dbn1hY1XM7a7d1nF9j25CX_IPlzlEy4_3xfiznH5PvsZv09JRLruyEpRZQQJl3EHgsiJWrCqGRdBMBKso5VBp4XlQjDpFVo6rFfYeiKq4loQO0fP5bpuav73Pndk0-3T612AFSktGqO4pOFMuNTknH0yb6p1NB4PBnOSYXo45yTEXOX3l6Vypvff_eL8BqgU9Apc3Xq4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808974239</pqid></control><display><type>article</type><title>Signals on Graphs: Uncertainty Principle and Sampling</title><source>IEEE Xplore (Online service)</source><creator>Tsitsvero, Mikhail ; Barbarossa, Sergio ; Di Lorenzo, Paolo</creator><creatorcontrib>Tsitsvero, Mikhail ; Barbarossa, Sergio ; Di Lorenzo, Paolo</creatorcontrib><description>In many applications, the observations can be represented as a signal defined over the vertices of a graph. The analysis of such signals requires the extension of standard signal processing tools. In this paper, first, we provide a class of graph signals that are maximally concentrated on the graph domain and on its dual. Then, building on this framework, we derive an uncertainty principle for graph signals and illustrate the conditions for the recovery of band-limited signals from a subset of samples. We show an interesting link between uncertainty principle and sampling and propose alternative signal recovery algorithms, including a generalization to frame-based reconstruction methods. After showing that the performance of signal recovery algorithms is significantly affected by the location of samples, we suggest and compare a few alternative sampling strategies. Finally, we provide the conditions for perfect recovery of a useful signal corrupted by sparse noise, showing that this problem is also intrinsically related to vertex-frequency localization properties.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2016.2573748</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Buildings ; Fourier transforms ; frames ; Laplace equations ; sampling ; Signal processing ; Signal processing algorithms ; Signals on graphs ; sparse noise ; Time-frequency analysis ; Uncertainty ; uncertainty principle</subject><ispartof>IEEE transactions on signal processing, 2016-09, Vol.64 (18), p.4845-4860</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-d634a62f345c0f57d2a6bd416f946fa83350d96e5f843c82bc58b1ee028d59723</citedby><cites>FETCH-LOGICAL-c357t-d634a62f345c0f57d2a6bd416f946fa83350d96e5f843c82bc58b1ee028d59723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7480396$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7480396$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tsitsvero, Mikhail</creatorcontrib><creatorcontrib>Barbarossa, Sergio</creatorcontrib><creatorcontrib>Di Lorenzo, Paolo</creatorcontrib><title>Signals on Graphs: Uncertainty Principle and Sampling</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In many applications, the observations can be represented as a signal defined over the vertices of a graph. The analysis of such signals requires the extension of standard signal processing tools. In this paper, first, we provide a class of graph signals that are maximally concentrated on the graph domain and on its dual. Then, building on this framework, we derive an uncertainty principle for graph signals and illustrate the conditions for the recovery of band-limited signals from a subset of samples. We show an interesting link between uncertainty principle and sampling and propose alternative signal recovery algorithms, including a generalization to frame-based reconstruction methods. After showing that the performance of signal recovery algorithms is significantly affected by the location of samples, we suggest and compare a few alternative sampling strategies. Finally, we provide the conditions for perfect recovery of a useful signal corrupted by sparse noise, showing that this problem is also intrinsically related to vertex-frequency localization properties.</description><subject>Algorithms</subject><subject>Buildings</subject><subject>Fourier transforms</subject><subject>frames</subject><subject>Laplace equations</subject><subject>sampling</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Signals on graphs</subject><subject>sparse noise</subject><subject>Time-frequency analysis</subject><subject>Uncertainty</subject><subject>uncertainty principle</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wcuC562T78SbFK1CwUJb8BbSbFK3tNk12R7677ulxdO8MM87DA9CjxhGGIN-WcxnIwJYjAiXVDJ1hQZYM1wCk-K6z8BpyZX8uUV3OW8AMGNaDBCf1-tot7loYjFJtv3Nr8UyOp86W8fuUMxSHV3dbn1hY1XM7a7d1nF9j25CX_IPlzlEy4_3xfiznH5PvsZv09JRLruyEpRZQQJl3EHgsiJWrCqGRdBMBKso5VBp4XlQjDpFVo6rFfYeiKq4loQO0fP5bpuav73Pndk0-3T612AFSktGqO4pOFMuNTknH0yb6p1NB4PBnOSYXo45yTEXOX3l6Vypvff_eL8BqgU9Apc3Xq4</recordid><startdate>20160915</startdate><enddate>20160915</enddate><creator>Tsitsvero, Mikhail</creator><creator>Barbarossa, Sergio</creator><creator>Di Lorenzo, Paolo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160915</creationdate><title>Signals on Graphs: Uncertainty Principle and Sampling</title><author>Tsitsvero, Mikhail ; Barbarossa, Sergio ; Di Lorenzo, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-d634a62f345c0f57d2a6bd416f946fa83350d96e5f843c82bc58b1ee028d59723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Buildings</topic><topic>Fourier transforms</topic><topic>frames</topic><topic>Laplace equations</topic><topic>sampling</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Signals on graphs</topic><topic>sparse noise</topic><topic>Time-frequency analysis</topic><topic>Uncertainty</topic><topic>uncertainty principle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsitsvero, Mikhail</creatorcontrib><creatorcontrib>Barbarossa, Sergio</creatorcontrib><creatorcontrib>Di Lorenzo, Paolo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tsitsvero, Mikhail</au><au>Barbarossa, Sergio</au><au>Di Lorenzo, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Signals on Graphs: Uncertainty Principle and Sampling</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2016-09-15</date><risdate>2016</risdate><volume>64</volume><issue>18</issue><spage>4845</spage><epage>4860</epage><pages>4845-4860</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In many applications, the observations can be represented as a signal defined over the vertices of a graph. The analysis of such signals requires the extension of standard signal processing tools. In this paper, first, we provide a class of graph signals that are maximally concentrated on the graph domain and on its dual. Then, building on this framework, we derive an uncertainty principle for graph signals and illustrate the conditions for the recovery of band-limited signals from a subset of samples. We show an interesting link between uncertainty principle and sampling and propose alternative signal recovery algorithms, including a generalization to frame-based reconstruction methods. After showing that the performance of signal recovery algorithms is significantly affected by the location of samples, we suggest and compare a few alternative sampling strategies. Finally, we provide the conditions for perfect recovery of a useful signal corrupted by sparse noise, showing that this problem is also intrinsically related to vertex-frequency localization properties.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2016.2573748</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2016-09, Vol.64 (18), p.4845-4860 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_journals_1808974239 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Buildings Fourier transforms frames Laplace equations sampling Signal processing Signal processing algorithms Signals on graphs sparse noise Time-frequency analysis Uncertainty uncertainty principle |
title | Signals on Graphs: Uncertainty Principle and Sampling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A35%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Signals%20on%20Graphs:%20Uncertainty%20Principle%20and%20Sampling&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Tsitsvero,%20Mikhail&rft.date=2016-09-15&rft.volume=64&rft.issue=18&rft.spage=4845&rft.epage=4860&rft.pages=4845-4860&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2016.2573748&rft_dat=%3Cproquest_RIE%3E4138056561%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808974239&rft_id=info:pmid/&rft_ieee_id=7480396&rfr_iscdi=true |