Signals on Graphs: Uncertainty Principle and Sampling

In many applications, the observations can be represented as a signal defined over the vertices of a graph. The analysis of such signals requires the extension of standard signal processing tools. In this paper, first, we provide a class of graph signals that are maximally concentrated on the graph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2016-09, Vol.64 (18), p.4845-4860
Hauptverfasser: Tsitsvero, Mikhail, Barbarossa, Sergio, Di Lorenzo, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4860
container_issue 18
container_start_page 4845
container_title IEEE transactions on signal processing
container_volume 64
creator Tsitsvero, Mikhail
Barbarossa, Sergio
Di Lorenzo, Paolo
description In many applications, the observations can be represented as a signal defined over the vertices of a graph. The analysis of such signals requires the extension of standard signal processing tools. In this paper, first, we provide a class of graph signals that are maximally concentrated on the graph domain and on its dual. Then, building on this framework, we derive an uncertainty principle for graph signals and illustrate the conditions for the recovery of band-limited signals from a subset of samples. We show an interesting link between uncertainty principle and sampling and propose alternative signal recovery algorithms, including a generalization to frame-based reconstruction methods. After showing that the performance of signal recovery algorithms is significantly affected by the location of samples, we suggest and compare a few alternative sampling strategies. Finally, we provide the conditions for perfect recovery of a useful signal corrupted by sparse noise, showing that this problem is also intrinsically related to vertex-frequency localization properties.
doi_str_mv 10.1109/TSP.2016.2573748
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1808974239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7480396</ieee_id><sourcerecordid>4138056561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-d634a62f345c0f57d2a6bd416f946fa83350d96e5f843c82bc58b1ee028d59723</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC562T78SbFK1CwUJb8BbSbFK3tNk12R7677ulxdO8MM87DA9CjxhGGIN-WcxnIwJYjAiXVDJ1hQZYM1wCk-K6z8BpyZX8uUV3OW8AMGNaDBCf1-tot7loYjFJtv3Nr8UyOp86W8fuUMxSHV3dbn1hY1XM7a7d1nF9j25CX_IPlzlEy4_3xfiznH5PvsZv09JRLruyEpRZQQJl3EHgsiJWrCqGRdBMBKso5VBp4XlQjDpFVo6rFfYeiKq4loQO0fP5bpuav73Pndk0-3T612AFSktGqO4pOFMuNTknH0yb6p1NB4PBnOSYXo45yTEXOX3l6Vypvff_eL8BqgU9Apc3Xq4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808974239</pqid></control><display><type>article</type><title>Signals on Graphs: Uncertainty Principle and Sampling</title><source>IEEE Xplore (Online service)</source><creator>Tsitsvero, Mikhail ; Barbarossa, Sergio ; Di Lorenzo, Paolo</creator><creatorcontrib>Tsitsvero, Mikhail ; Barbarossa, Sergio ; Di Lorenzo, Paolo</creatorcontrib><description>In many applications, the observations can be represented as a signal defined over the vertices of a graph. The analysis of such signals requires the extension of standard signal processing tools. In this paper, first, we provide a class of graph signals that are maximally concentrated on the graph domain and on its dual. Then, building on this framework, we derive an uncertainty principle for graph signals and illustrate the conditions for the recovery of band-limited signals from a subset of samples. We show an interesting link between uncertainty principle and sampling and propose alternative signal recovery algorithms, including a generalization to frame-based reconstruction methods. After showing that the performance of signal recovery algorithms is significantly affected by the location of samples, we suggest and compare a few alternative sampling strategies. Finally, we provide the conditions for perfect recovery of a useful signal corrupted by sparse noise, showing that this problem is also intrinsically related to vertex-frequency localization properties.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2016.2573748</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Buildings ; Fourier transforms ; frames ; Laplace equations ; sampling ; Signal processing ; Signal processing algorithms ; Signals on graphs ; sparse noise ; Time-frequency analysis ; Uncertainty ; uncertainty principle</subject><ispartof>IEEE transactions on signal processing, 2016-09, Vol.64 (18), p.4845-4860</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-d634a62f345c0f57d2a6bd416f946fa83350d96e5f843c82bc58b1ee028d59723</citedby><cites>FETCH-LOGICAL-c357t-d634a62f345c0f57d2a6bd416f946fa83350d96e5f843c82bc58b1ee028d59723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7480396$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7480396$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tsitsvero, Mikhail</creatorcontrib><creatorcontrib>Barbarossa, Sergio</creatorcontrib><creatorcontrib>Di Lorenzo, Paolo</creatorcontrib><title>Signals on Graphs: Uncertainty Principle and Sampling</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In many applications, the observations can be represented as a signal defined over the vertices of a graph. The analysis of such signals requires the extension of standard signal processing tools. In this paper, first, we provide a class of graph signals that are maximally concentrated on the graph domain and on its dual. Then, building on this framework, we derive an uncertainty principle for graph signals and illustrate the conditions for the recovery of band-limited signals from a subset of samples. We show an interesting link between uncertainty principle and sampling and propose alternative signal recovery algorithms, including a generalization to frame-based reconstruction methods. After showing that the performance of signal recovery algorithms is significantly affected by the location of samples, we suggest and compare a few alternative sampling strategies. Finally, we provide the conditions for perfect recovery of a useful signal corrupted by sparse noise, showing that this problem is also intrinsically related to vertex-frequency localization properties.</description><subject>Algorithms</subject><subject>Buildings</subject><subject>Fourier transforms</subject><subject>frames</subject><subject>Laplace equations</subject><subject>sampling</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Signals on graphs</subject><subject>sparse noise</subject><subject>Time-frequency analysis</subject><subject>Uncertainty</subject><subject>uncertainty principle</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wcuC562T78SbFK1CwUJb8BbSbFK3tNk12R7677ulxdO8MM87DA9CjxhGGIN-WcxnIwJYjAiXVDJ1hQZYM1wCk-K6z8BpyZX8uUV3OW8AMGNaDBCf1-tot7loYjFJtv3Nr8UyOp86W8fuUMxSHV3dbn1hY1XM7a7d1nF9j25CX_IPlzlEy4_3xfiznH5PvsZv09JRLruyEpRZQQJl3EHgsiJWrCqGRdBMBKso5VBp4XlQjDpFVo6rFfYeiKq4loQO0fP5bpuav73Pndk0-3T612AFSktGqO4pOFMuNTknH0yb6p1NB4PBnOSYXo45yTEXOX3l6Vypvff_eL8BqgU9Apc3Xq4</recordid><startdate>20160915</startdate><enddate>20160915</enddate><creator>Tsitsvero, Mikhail</creator><creator>Barbarossa, Sergio</creator><creator>Di Lorenzo, Paolo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160915</creationdate><title>Signals on Graphs: Uncertainty Principle and Sampling</title><author>Tsitsvero, Mikhail ; Barbarossa, Sergio ; Di Lorenzo, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-d634a62f345c0f57d2a6bd416f946fa83350d96e5f843c82bc58b1ee028d59723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Buildings</topic><topic>Fourier transforms</topic><topic>frames</topic><topic>Laplace equations</topic><topic>sampling</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Signals on graphs</topic><topic>sparse noise</topic><topic>Time-frequency analysis</topic><topic>Uncertainty</topic><topic>uncertainty principle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsitsvero, Mikhail</creatorcontrib><creatorcontrib>Barbarossa, Sergio</creatorcontrib><creatorcontrib>Di Lorenzo, Paolo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tsitsvero, Mikhail</au><au>Barbarossa, Sergio</au><au>Di Lorenzo, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Signals on Graphs: Uncertainty Principle and Sampling</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2016-09-15</date><risdate>2016</risdate><volume>64</volume><issue>18</issue><spage>4845</spage><epage>4860</epage><pages>4845-4860</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In many applications, the observations can be represented as a signal defined over the vertices of a graph. The analysis of such signals requires the extension of standard signal processing tools. In this paper, first, we provide a class of graph signals that are maximally concentrated on the graph domain and on its dual. Then, building on this framework, we derive an uncertainty principle for graph signals and illustrate the conditions for the recovery of band-limited signals from a subset of samples. We show an interesting link between uncertainty principle and sampling and propose alternative signal recovery algorithms, including a generalization to frame-based reconstruction methods. After showing that the performance of signal recovery algorithms is significantly affected by the location of samples, we suggest and compare a few alternative sampling strategies. Finally, we provide the conditions for perfect recovery of a useful signal corrupted by sparse noise, showing that this problem is also intrinsically related to vertex-frequency localization properties.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2016.2573748</doi><tpages>16</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2016-09, Vol.64 (18), p.4845-4860
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_journals_1808974239
source IEEE Xplore (Online service)
subjects Algorithms
Buildings
Fourier transforms
frames
Laplace equations
sampling
Signal processing
Signal processing algorithms
Signals on graphs
sparse noise
Time-frequency analysis
Uncertainty
uncertainty principle
title Signals on Graphs: Uncertainty Principle and Sampling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A35%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Signals%20on%20Graphs:%20Uncertainty%20Principle%20and%20Sampling&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Tsitsvero,%20Mikhail&rft.date=2016-09-15&rft.volume=64&rft.issue=18&rft.spage=4845&rft.epage=4860&rft.pages=4845-4860&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2016.2573748&rft_dat=%3Cproquest_RIE%3E4138056561%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808974239&rft_id=info:pmid/&rft_ieee_id=7480396&rfr_iscdi=true