Lattice Paths and Harmonic Means
Harmonic means are rarely discussed these days, perhaps because there are few interesting examples of their use. Starting with a question about lattice paths, we present a problem that finds its solution incorporating harmonic means. We also outline the situation beyond two dimensions.
Gespeichert in:
Veröffentlicht in: | The College mathematics journal 2016-03, Vol.47 (2), p.121-124 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 124 |
---|---|
container_issue | 2 |
container_start_page | 121 |
container_title | The College mathematics journal |
container_volume | 47 |
creator | Zucker, Marc |
description | Harmonic means are rarely discussed these days, perhaps because there are few interesting examples of their use. Starting with a question about lattice paths, we present a problem that finds its solution incorporating harmonic means. We also outline the situation beyond two dimensions. |
doi_str_mv | 10.4169/college.math.j.47.2.121 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1805783622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>10.4169/college.math.j.47.2.121</jstor_id><sourcerecordid>10.4169/college.math.j.47.2.121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-38ce8156180eda4bd06faa5bd3d6953caf0714ea0af29a1d90c785c42a7494ce3</originalsourceid><addsrcrecordid>eNqFkM1KxDAURoMoWEefwYJbW3OTNEmXMqgjjOhC1-FOmmpLf8Yks_Dt7dDBleLqbs75LhxCLoHmAmR5Y8euc-8u7zF-5G0uVM5yYHBEEig5ZMCFPCYJVUJmmgt2Ss5CaCmloJVMSLrGGBvr0pdJDykOVbpC349DY9Mnh0M4Jyc1dsFdHO6CvN3fvS5X2fr54XF5u84sYzpmXFunoZCgqatQbCoqa8RiU_FKlgW3WFMFwiHFmpUIVUmt0oUVDJUohXV8Qa7m3a0fP3cuRNOOOz9ML820WSjNJWMTpWbK-jEE72qz9U2P_ssANfsc5pDD7HOY1ghlmJlyTOb1bLYhjv5H-xsXv-H_ffkGPuR32g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1805783622</pqid></control><display><type>article</type><title>Lattice Paths and Harmonic Means</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Zucker, Marc</creator><creatorcontrib>Zucker, Marc</creatorcontrib><description>Harmonic means are rarely discussed these days, perhaps because there are few interesting examples of their use. Starting with a question about lattice paths, we present a problem that finds its solution incorporating harmonic means. We also outline the situation beyond two dimensions.</description><identifier>ISSN: 0746-8342</identifier><identifier>EISSN: 1931-1346</identifier><identifier>DOI: 10.4169/college.math.j.47.2.121</identifier><language>eng</language><publisher>Washington: Mathematical Association of America</publisher><subject>Arithmetic mean ; College mathematics ; Combinatorics ; Harmonic analysis ; Harmonic mean ; Lattice theory ; Mathematical induction ; Mathematical lattices ; Mathematical monotonicity ; Mathematical theorems ; Mathematics</subject><ispartof>The College mathematics journal, 2016-03, Vol.47 (2), p.121-124</ispartof><rights>Copyright 2016 The Mathematical Association of America</rights><rights>Copyright Mathematical Association Of America Mar 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c228t-38ce8156180eda4bd06faa5bd3d6953caf0714ea0af29a1d90c785c42a7494ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,803,832,27924,27925</link.rule.ids></links><search><creatorcontrib>Zucker, Marc</creatorcontrib><title>Lattice Paths and Harmonic Means</title><title>The College mathematics journal</title><description>Harmonic means are rarely discussed these days, perhaps because there are few interesting examples of their use. Starting with a question about lattice paths, we present a problem that finds its solution incorporating harmonic means. We also outline the situation beyond two dimensions.</description><subject>Arithmetic mean</subject><subject>College mathematics</subject><subject>Combinatorics</subject><subject>Harmonic analysis</subject><subject>Harmonic mean</subject><subject>Lattice theory</subject><subject>Mathematical induction</subject><subject>Mathematical lattices</subject><subject>Mathematical monotonicity</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><issn>0746-8342</issn><issn>1931-1346</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KxDAURoMoWEefwYJbW3OTNEmXMqgjjOhC1-FOmmpLf8Yks_Dt7dDBleLqbs75LhxCLoHmAmR5Y8euc-8u7zF-5G0uVM5yYHBEEig5ZMCFPCYJVUJmmgt2Ss5CaCmloJVMSLrGGBvr0pdJDykOVbpC349DY9Mnh0M4Jyc1dsFdHO6CvN3fvS5X2fr54XF5u84sYzpmXFunoZCgqatQbCoqa8RiU_FKlgW3WFMFwiHFmpUIVUmt0oUVDJUohXV8Qa7m3a0fP3cuRNOOOz9ML820WSjNJWMTpWbK-jEE72qz9U2P_ssANfsc5pDD7HOY1ghlmJlyTOb1bLYhjv5H-xsXv-H_ffkGPuR32g</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Zucker, Marc</creator><general>Mathematical Association of America</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20160301</creationdate><title>Lattice Paths and Harmonic Means</title><author>Zucker, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-38ce8156180eda4bd06faa5bd3d6953caf0714ea0af29a1d90c785c42a7494ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Arithmetic mean</topic><topic>College mathematics</topic><topic>Combinatorics</topic><topic>Harmonic analysis</topic><topic>Harmonic mean</topic><topic>Lattice theory</topic><topic>Mathematical induction</topic><topic>Mathematical lattices</topic><topic>Mathematical monotonicity</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zucker, Marc</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The College mathematics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zucker, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice Paths and Harmonic Means</atitle><jtitle>The College mathematics journal</jtitle><date>2016-03-01</date><risdate>2016</risdate><volume>47</volume><issue>2</issue><spage>121</spage><epage>124</epage><pages>121-124</pages><issn>0746-8342</issn><eissn>1931-1346</eissn><abstract>Harmonic means are rarely discussed these days, perhaps because there are few interesting examples of their use. Starting with a question about lattice paths, we present a problem that finds its solution incorporating harmonic means. We also outline the situation beyond two dimensions.</abstract><cop>Washington</cop><pub>Mathematical Association of America</pub><doi>10.4169/college.math.j.47.2.121</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0746-8342 |
ispartof | The College mathematics journal, 2016-03, Vol.47 (2), p.121-124 |
issn | 0746-8342 1931-1346 |
language | eng |
recordid | cdi_proquest_journals_1805783622 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Arithmetic mean College mathematics Combinatorics Harmonic analysis Harmonic mean Lattice theory Mathematical induction Mathematical lattices Mathematical monotonicity Mathematical theorems Mathematics |
title | Lattice Paths and Harmonic Means |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A32%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20Paths%20and%20Harmonic%20Means&rft.jtitle=The%20College%20mathematics%20journal&rft.au=Zucker,%20Marc&rft.date=2016-03-01&rft.volume=47&rft.issue=2&rft.spage=121&rft.epage=124&rft.pages=121-124&rft.issn=0746-8342&rft.eissn=1931-1346&rft_id=info:doi/10.4169/college.math.j.47.2.121&rft_dat=%3Cjstor_proqu%3E10.4169/college.math.j.47.2.121%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1805783622&rft_id=info:pmid/&rft_jstor_id=10.4169/college.math.j.47.2.121&rfr_iscdi=true |