Emission Spectroscopy of Partial Discharges in Air-Filled Voids in Unfilled Epoxy
In this work, emission optical spectroscopy is used as a technique to study partial discharges (PDs) in four unfilled epoxy samples encompassing an artificial air-filled cavity. It is shown that emission spectroscopy can be used to estimate the density and the chemical composition of a gas from the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on plasma science 2016-07, Vol.44 (7), p.1219-1227 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, emission optical spectroscopy is used as a technique to study partial discharges (PDs) in four unfilled epoxy samples encompassing an artificial air-filled cavity. It is shown that emission spectroscopy can be used to estimate the density and the chemical composition of a gas from the spectrally resolved emission and time-resolved pulse shape of the PDs at any time during the aging process. Two scenarios are observed: either PD continues until the sample breaks down (observed in 1 out of 4 samples) or PD stops at a certain point without sample breakdown (3 out of 4 samples). For both the scenarios, a stable initial phase with a gradual decrease of emission intensity from the discharge is typical for a few hundreds of hours of continuous discharge operation. At this stage, the spectrum of the second positive system of molecular nitrogen dominates in the entire spectral range of 350-500 nm studied in this work. Furthermore, time-resolved measurements indicate two types of discharges of very different frequencies and magnitudes as well as a decrease of the pressure in the voids as a function of aging time. Then, a sharp 500% increase of the N 2 emission is observed 2 days before the breakdown; during the last day a spectrum of CO and some other C-N-O-H containing molecules is observed instead of the spectrum of molecular nitrogen. This allows predicting a breakdown at least a few hours before it happens by analyzing the broad emission spectra behavior. Additionally, the possible role of surface conductivity increase during aging on PD inhibition is discussed. |
---|---|
ISSN: | 0093-3813 1939-9375 |
DOI: | 10.1109/TPS.2016.2576560 |