Exploring Latent Preferences for Context-Aware Personalized Recommendation Systems

Context-aware recommendations offer the potential of exploiting social contents and utilize related tags and rating information to personalize the search for content considering a given context. Recommendation systems tackle the problem of trying to identify relevant resources from the vast number o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on human-machine systems 2016-08, Vol.46 (4), p.615-623
Hauptverfasser: Alhamid, Mohammed F., Rawashdeh, Majdi, Dong, Haiwei, Hossain, M Anwar, El Saddik, Abdulmotaleb
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Context-aware recommendations offer the potential of exploiting social contents and utilize related tags and rating information to personalize the search for content considering a given context. Recommendation systems tackle the problem of trying to identify relevant resources from the vast number of choices available online. In this study, we propose a new recommendation model that personalizes recommendations and improves the user experience by analyzing the context when a user wishes to access multimedia content. We conducted empirical analysis on a dataset from last.fm to demonstrate the use of latent preferences for ranking items under a given context. Additionally, we use an optimization function to maximize the mean average precision measure of the resulted recommendation. Experimental results show a potential improvement to the quality of the recommendation in terms of accuracy when compared with state-of-the-art algorithms.
ISSN:2168-2291
2168-2305
DOI:10.1109/THMS.2015.2509965