Exploring Latent Preferences for Context-Aware Personalized Recommendation Systems
Context-aware recommendations offer the potential of exploiting social contents and utilize related tags and rating information to personalize the search for content considering a given context. Recommendation systems tackle the problem of trying to identify relevant resources from the vast number o...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on human-machine systems 2016-08, Vol.46 (4), p.615-623 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Context-aware recommendations offer the potential of exploiting social contents and utilize related tags and rating information to personalize the search for content considering a given context. Recommendation systems tackle the problem of trying to identify relevant resources from the vast number of choices available online. In this study, we propose a new recommendation model that personalizes recommendations and improves the user experience by analyzing the context when a user wishes to access multimedia content. We conducted empirical analysis on a dataset from last.fm to demonstrate the use of latent preferences for ranking items under a given context. Additionally, we use an optimization function to maximize the mean average precision measure of the resulted recommendation. Experimental results show a potential improvement to the quality of the recommendation in terms of accuracy when compared with state-of-the-art algorithms. |
---|---|
ISSN: | 2168-2291 2168-2305 |
DOI: | 10.1109/THMS.2015.2509965 |