Comparison of direct statistical and indirect statistical-deterministic frameworks in downscaling river low-flow indices
This work explores the ability of two methodologies in downscaling hydrological indices characterizing the low flow regime of three salmon rivers in Eastern Canada: Moisie, Romaine and Ouelle. The selected indices describe four aspects of the low flow regime of these rivers: amplitude, frequency, va...
Gespeichert in:
Veröffentlicht in: | Hydrological sciences journal 2016-08, Vol.61 (11), p.1996-2010 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2010 |
---|---|
container_issue | 11 |
container_start_page | 1996 |
container_title | Hydrological sciences journal |
container_volume | 61 |
creator | Joshi, Deepti St-Hilaire, Andre Ouarda, Taha B. M. J. Daigle, Anik Thiemonge, Nathalie |
description | This work explores the ability of two methodologies in downscaling hydrological indices characterizing the low flow regime of three salmon rivers in Eastern Canada: Moisie, Romaine and Ouelle. The selected indices describe four aspects of the low flow regime of these rivers: amplitude, frequency, variability and timing. The first methodology (direct downscaling) ascertains a direct link between large-scale atmospheric variables (the predictors) and low flow indices (the predictands). The second (indirect downscaling) involves downscaling precipitation and air temperature (local climate variables) that are introduced into a hydrological model to simulate flows. Synthetic flow time series are subsequently used to calculate the low flow indices. The statistical models used for downscaling low flow hydrological indices and local climate variables are: Sparse Bayesian Learning and Multiple Linear Regression. The results showed that direct downscaling using Sparse Bayesian Learning surpassed the other approaches with respect to goodness of fit and generalization ability.
Editor D. Koutsoyiannis; Associate editor K. Hamed |
doi_str_mv | 10.1080/02626667.2014.966719 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1803254726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1811906877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-4bdc64f54be78ce145537c480f94c61ffd1b78b9873094533c9d3d9b2ac14d863</originalsourceid><addsrcrecordid>eNp9kctKAzEUhoMoWKtv4CLgxs3UZJLJTFYixRsU3Og6ZHKR1JmkJlNr395MqxsFN-fC-c7P4fwAnGM0w6hBV6hkJWOsnpUI0xnPFeYHYFLiChWEkuoQTEakGJljcJLSEiFCOSMT8DkP_UpGl4KHwULtolEDTIMcXBqckh2UXkPn_w4KbQYTe-d3PbRR9mYT4lvKNNRh41OGnH-F0X2YCLuwKWwOOy1l0ik4srJL5uw7T8HL3e3z_KFYPN0_zm8WhaKYDgVttWLUVrQ1daMMplVFakUbZDlVDFurcVs3LW9qgjitCFFcE83bUipMdcPIFFzudVcxvK9NGkTvkjJdJ70J6yRwgzFHrKnrjF78QpdhHX2-LlOIlBWty1GQ7ikVQ0rRWLGKrpdxKzASox3ixw4x2iH2duS16_2a8zbEXuZXdVoMctuFmH_nlUuC_KvwBTEfk3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1803254726</pqid></control><display><type>article</type><title>Comparison of direct statistical and indirect statistical-deterministic frameworks in downscaling river low-flow indices</title><source>Taylor & Francis Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Joshi, Deepti ; St-Hilaire, Andre ; Ouarda, Taha B. M. J. ; Daigle, Anik ; Thiemonge, Nathalie</creator><creatorcontrib>Joshi, Deepti ; St-Hilaire, Andre ; Ouarda, Taha B. M. J. ; Daigle, Anik ; Thiemonge, Nathalie</creatorcontrib><description>This work explores the ability of two methodologies in downscaling hydrological indices characterizing the low flow regime of three salmon rivers in Eastern Canada: Moisie, Romaine and Ouelle. The selected indices describe four aspects of the low flow regime of these rivers: amplitude, frequency, variability and timing. The first methodology (direct downscaling) ascertains a direct link between large-scale atmospheric variables (the predictors) and low flow indices (the predictands). The second (indirect downscaling) involves downscaling precipitation and air temperature (local climate variables) that are introduced into a hydrological model to simulate flows. Synthetic flow time series are subsequently used to calculate the low flow indices. The statistical models used for downscaling low flow hydrological indices and local climate variables are: Sparse Bayesian Learning and Multiple Linear Regression. The results showed that direct downscaling using Sparse Bayesian Learning surpassed the other approaches with respect to goodness of fit and generalization ability.
Editor D. Koutsoyiannis; Associate editor K. Hamed</description><identifier>ISSN: 0262-6667</identifier><identifier>EISSN: 2150-3435</identifier><identifier>DOI: 10.1080/02626667.2014.966719</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>canonical correlation analysis ; Freshwater ; hydrological modelling ; Hydrology ; low flows ; multiple linear regression ; Regression analysis ; relevance vector machine ; Rivers ; statistical downscaling</subject><ispartof>Hydrological sciences journal, 2016-08, Vol.61 (11), p.1996-2010</ispartof><rights>2016 IAHS 2016</rights><rights>2016 IAHS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-4bdc64f54be78ce145537c480f94c61ffd1b78b9873094533c9d3d9b2ac14d863</citedby><cites>FETCH-LOGICAL-c414t-4bdc64f54be78ce145537c480f94c61ffd1b78b9873094533c9d3d9b2ac14d863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/02626667.2014.966719$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/02626667.2014.966719$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,59624,60413</link.rule.ids></links><search><creatorcontrib>Joshi, Deepti</creatorcontrib><creatorcontrib>St-Hilaire, Andre</creatorcontrib><creatorcontrib>Ouarda, Taha B. M. J.</creatorcontrib><creatorcontrib>Daigle, Anik</creatorcontrib><creatorcontrib>Thiemonge, Nathalie</creatorcontrib><title>Comparison of direct statistical and indirect statistical-deterministic frameworks in downscaling river low-flow indices</title><title>Hydrological sciences journal</title><description>This work explores the ability of two methodologies in downscaling hydrological indices characterizing the low flow regime of three salmon rivers in Eastern Canada: Moisie, Romaine and Ouelle. The selected indices describe four aspects of the low flow regime of these rivers: amplitude, frequency, variability and timing. The first methodology (direct downscaling) ascertains a direct link between large-scale atmospheric variables (the predictors) and low flow indices (the predictands). The second (indirect downscaling) involves downscaling precipitation and air temperature (local climate variables) that are introduced into a hydrological model to simulate flows. Synthetic flow time series are subsequently used to calculate the low flow indices. The statistical models used for downscaling low flow hydrological indices and local climate variables are: Sparse Bayesian Learning and Multiple Linear Regression. The results showed that direct downscaling using Sparse Bayesian Learning surpassed the other approaches with respect to goodness of fit and generalization ability.
Editor D. Koutsoyiannis; Associate editor K. Hamed</description><subject>canonical correlation analysis</subject><subject>Freshwater</subject><subject>hydrological modelling</subject><subject>Hydrology</subject><subject>low flows</subject><subject>multiple linear regression</subject><subject>Regression analysis</subject><subject>relevance vector machine</subject><subject>Rivers</subject><subject>statistical downscaling</subject><issn>0262-6667</issn><issn>2150-3435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kctKAzEUhoMoWKtv4CLgxs3UZJLJTFYixRsU3Og6ZHKR1JmkJlNr395MqxsFN-fC-c7P4fwAnGM0w6hBV6hkJWOsnpUI0xnPFeYHYFLiChWEkuoQTEakGJljcJLSEiFCOSMT8DkP_UpGl4KHwULtolEDTIMcXBqckh2UXkPn_w4KbQYTe-d3PbRR9mYT4lvKNNRh41OGnH-F0X2YCLuwKWwOOy1l0ik4srJL5uw7T8HL3e3z_KFYPN0_zm8WhaKYDgVttWLUVrQ1daMMplVFakUbZDlVDFurcVs3LW9qgjitCFFcE83bUipMdcPIFFzudVcxvK9NGkTvkjJdJ70J6yRwgzFHrKnrjF78QpdhHX2-LlOIlBWty1GQ7ikVQ0rRWLGKrpdxKzASox3ixw4x2iH2duS16_2a8zbEXuZXdVoMctuFmH_nlUuC_KvwBTEfk3A</recordid><startdate>20160817</startdate><enddate>20160817</enddate><creator>Joshi, Deepti</creator><creator>St-Hilaire, Andre</creator><creator>Ouarda, Taha B. M. J.</creator><creator>Daigle, Anik</creator><creator>Thiemonge, Nathalie</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20160817</creationdate><title>Comparison of direct statistical and indirect statistical-deterministic frameworks in downscaling river low-flow indices</title><author>Joshi, Deepti ; St-Hilaire, Andre ; Ouarda, Taha B. M. J. ; Daigle, Anik ; Thiemonge, Nathalie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-4bdc64f54be78ce145537c480f94c61ffd1b78b9873094533c9d3d9b2ac14d863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>canonical correlation analysis</topic><topic>Freshwater</topic><topic>hydrological modelling</topic><topic>Hydrology</topic><topic>low flows</topic><topic>multiple linear regression</topic><topic>Regression analysis</topic><topic>relevance vector machine</topic><topic>Rivers</topic><topic>statistical downscaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joshi, Deepti</creatorcontrib><creatorcontrib>St-Hilaire, Andre</creatorcontrib><creatorcontrib>Ouarda, Taha B. M. J.</creatorcontrib><creatorcontrib>Daigle, Anik</creatorcontrib><creatorcontrib>Thiemonge, Nathalie</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Hydrological sciences journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joshi, Deepti</au><au>St-Hilaire, Andre</au><au>Ouarda, Taha B. M. J.</au><au>Daigle, Anik</au><au>Thiemonge, Nathalie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of direct statistical and indirect statistical-deterministic frameworks in downscaling river low-flow indices</atitle><jtitle>Hydrological sciences journal</jtitle><date>2016-08-17</date><risdate>2016</risdate><volume>61</volume><issue>11</issue><spage>1996</spage><epage>2010</epage><pages>1996-2010</pages><issn>0262-6667</issn><eissn>2150-3435</eissn><abstract>This work explores the ability of two methodologies in downscaling hydrological indices characterizing the low flow regime of three salmon rivers in Eastern Canada: Moisie, Romaine and Ouelle. The selected indices describe four aspects of the low flow regime of these rivers: amplitude, frequency, variability and timing. The first methodology (direct downscaling) ascertains a direct link between large-scale atmospheric variables (the predictors) and low flow indices (the predictands). The second (indirect downscaling) involves downscaling precipitation and air temperature (local climate variables) that are introduced into a hydrological model to simulate flows. Synthetic flow time series are subsequently used to calculate the low flow indices. The statistical models used for downscaling low flow hydrological indices and local climate variables are: Sparse Bayesian Learning and Multiple Linear Regression. The results showed that direct downscaling using Sparse Bayesian Learning surpassed the other approaches with respect to goodness of fit and generalization ability.
Editor D. Koutsoyiannis; Associate editor K. Hamed</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/02626667.2014.966719</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0262-6667 |
ispartof | Hydrological sciences journal, 2016-08, Vol.61 (11), p.1996-2010 |
issn | 0262-6667 2150-3435 |
language | eng |
recordid | cdi_proquest_journals_1803254726 |
source | Taylor & Francis Journals Complete; Alma/SFX Local Collection |
subjects | canonical correlation analysis Freshwater hydrological modelling Hydrology low flows multiple linear regression Regression analysis relevance vector machine Rivers statistical downscaling |
title | Comparison of direct statistical and indirect statistical-deterministic frameworks in downscaling river low-flow indices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A00%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20direct%20statistical%20and%20indirect%20statistical-deterministic%20frameworks%20in%20downscaling%20river%20low-flow%20indices&rft.jtitle=Hydrological%20sciences%20journal&rft.au=Joshi,%20Deepti&rft.date=2016-08-17&rft.volume=61&rft.issue=11&rft.spage=1996&rft.epage=2010&rft.pages=1996-2010&rft.issn=0262-6667&rft.eissn=2150-3435&rft_id=info:doi/10.1080/02626667.2014.966719&rft_dat=%3Cproquest_cross%3E1811906877%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1803254726&rft_id=info:pmid/&rfr_iscdi=true |