Weak Convergence Analysis of Asymptotically Optimal Hypothesis Tests

In recent years, solutions to various hypothesis testing problems in the asymptotic setting have been proposed using the results from large deviation theory. Such tests are optimal in terms of appropriately defined error exponents. For the practitioner, however, error probabilities in the finite sam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2016-07, Vol.62 (7), p.4285-4299
Hauptverfasser: Unnikrishnan, Jayakrishnan, Dayu Huang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4299
container_issue 7
container_start_page 4285
container_title IEEE transactions on information theory
container_volume 62
creator Unnikrishnan, Jayakrishnan
Dayu Huang
description In recent years, solutions to various hypothesis testing problems in the asymptotic setting have been proposed using the results from large deviation theory. Such tests are optimal in terms of appropriately defined error exponents. For the practitioner, however, error probabilities in the finite sample size setting are more important. In this paper, we show how results on weak convergence of the test statistic can be used to obtain better approximations for the error probabilities in the finite sample size setting. While this technique is popular among statisticians for common tests, we demonstrate its applicability for several recently proposed asymptotically optimal tests, including tests for robust goodness of fit, homogeneity tests, outlier hypothesis testing, and graphical model estimation.
doi_str_mv 10.1109/TIT.2016.2563439
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1802221826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7465817</ieee_id><sourcerecordid>1825521161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-cfa4a0ac0eacd76f2b22afb8ce5ce4c3b70fa7d3f5f0203edaa6c0c452e2ed2c3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFbvgpeAFy-p-53kWOpHC4VeIh6X7WZWU9Ns3E2F_Hs3tHjwNAw87wzvg9AtwTNCcPFYrsoZxUTOqJCMs-IMTYgQWVpIwc_RBGOSpwXn-SW6CmEXVy4InaCnd9BfycK1P-A_oDWQzFvdDKEOibPJPAz7rnd9bXTTDMmm6-u9bpLl0Ln-E0aohNCHa3RhdRPg5jSn6O3luVws0_XmdbWYr1PDCtynxmqusTYYtKkyaemWUm23uQFhgBu2zbDVWcWssJhiBpXW0mDDBQUKFTVsih6Odzvvvg_xs9rXwUDT6BbcISiSUyEoIZJE9P4funMHH6uNFKaURlZGCh8p410IHqzqfGzoB0WwGrWqqFWNWtVJa4zcHSM1APzhGZciJxn7BUTVdLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1802221826</pqid></control><display><type>article</type><title>Weak Convergence Analysis of Asymptotically Optimal Hypothesis Tests</title><source>IEEE Electronic Library (IEL)</source><creator>Unnikrishnan, Jayakrishnan ; Dayu Huang</creator><creatorcontrib>Unnikrishnan, Jayakrishnan ; Dayu Huang</creatorcontrib><description>In recent years, solutions to various hypothesis testing problems in the asymptotic setting have been proposed using the results from large deviation theory. Such tests are optimal in terms of appropriately defined error exponents. For the practitioner, however, error probabilities in the finite sample size setting are more important. In this paper, we show how results on weak convergence of the test statistic can be used to obtain better approximations for the error probabilities in the finite sample size setting. While this technique is popular among statisticians for common tests, we demonstrate its applicability for several recently proposed asymptotically optimal tests, including tests for robust goodness of fit, homogeneity tests, outlier hypothesis testing, and graphical model estimation.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2016.2563439</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Asymptotic properties ; Convergence ; Error probability ; Errors ; Hypothesis testing ; Information theory ; Mathematical analysis ; Optimization ; Random variables ; Robustness ; Sample size ; Samples ; Statistical analysis ; Statistical methods ; Testing ; Zinc</subject><ispartof>IEEE transactions on information theory, 2016-07, Vol.62 (7), p.4285-4299</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-cfa4a0ac0eacd76f2b22afb8ce5ce4c3b70fa7d3f5f0203edaa6c0c452e2ed2c3</citedby><cites>FETCH-LOGICAL-c390t-cfa4a0ac0eacd76f2b22afb8ce5ce4c3b70fa7d3f5f0203edaa6c0c452e2ed2c3</cites><orcidid>0000-0002-8464-4641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7465817$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7465817$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Unnikrishnan, Jayakrishnan</creatorcontrib><creatorcontrib>Dayu Huang</creatorcontrib><title>Weak Convergence Analysis of Asymptotically Optimal Hypothesis Tests</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>In recent years, solutions to various hypothesis testing problems in the asymptotic setting have been proposed using the results from large deviation theory. Such tests are optimal in terms of appropriately defined error exponents. For the practitioner, however, error probabilities in the finite sample size setting are more important. In this paper, we show how results on weak convergence of the test statistic can be used to obtain better approximations for the error probabilities in the finite sample size setting. While this technique is popular among statisticians for common tests, we demonstrate its applicability for several recently proposed asymptotically optimal tests, including tests for robust goodness of fit, homogeneity tests, outlier hypothesis testing, and graphical model estimation.</description><subject>Approximation</subject><subject>Asymptotic properties</subject><subject>Convergence</subject><subject>Error probability</subject><subject>Errors</subject><subject>Hypothesis testing</subject><subject>Information theory</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Random variables</subject><subject>Robustness</subject><subject>Sample size</subject><subject>Samples</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Testing</subject><subject>Zinc</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRsFbvgpeAFy-p-53kWOpHC4VeIh6X7WZWU9Ns3E2F_Hs3tHjwNAw87wzvg9AtwTNCcPFYrsoZxUTOqJCMs-IMTYgQWVpIwc_RBGOSpwXn-SW6CmEXVy4InaCnd9BfycK1P-A_oDWQzFvdDKEOibPJPAz7rnd9bXTTDMmm6-u9bpLl0Ln-E0aohNCHa3RhdRPg5jSn6O3luVws0_XmdbWYr1PDCtynxmqusTYYtKkyaemWUm23uQFhgBu2zbDVWcWssJhiBpXW0mDDBQUKFTVsih6Odzvvvg_xs9rXwUDT6BbcISiSUyEoIZJE9P4funMHH6uNFKaURlZGCh8p410IHqzqfGzoB0WwGrWqqFWNWtVJa4zcHSM1APzhGZciJxn7BUTVdLQ</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Unnikrishnan, Jayakrishnan</creator><creator>Dayu Huang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-8464-4641</orcidid></search><sort><creationdate>201607</creationdate><title>Weak Convergence Analysis of Asymptotically Optimal Hypothesis Tests</title><author>Unnikrishnan, Jayakrishnan ; Dayu Huang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-cfa4a0ac0eacd76f2b22afb8ce5ce4c3b70fa7d3f5f0203edaa6c0c452e2ed2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Asymptotic properties</topic><topic>Convergence</topic><topic>Error probability</topic><topic>Errors</topic><topic>Hypothesis testing</topic><topic>Information theory</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Random variables</topic><topic>Robustness</topic><topic>Sample size</topic><topic>Samples</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Testing</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Unnikrishnan, Jayakrishnan</creatorcontrib><creatorcontrib>Dayu Huang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Unnikrishnan, Jayakrishnan</au><au>Dayu Huang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak Convergence Analysis of Asymptotically Optimal Hypothesis Tests</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2016-07</date><risdate>2016</risdate><volume>62</volume><issue>7</issue><spage>4285</spage><epage>4299</epage><pages>4285-4299</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>In recent years, solutions to various hypothesis testing problems in the asymptotic setting have been proposed using the results from large deviation theory. Such tests are optimal in terms of appropriately defined error exponents. For the practitioner, however, error probabilities in the finite sample size setting are more important. In this paper, we show how results on weak convergence of the test statistic can be used to obtain better approximations for the error probabilities in the finite sample size setting. While this technique is popular among statisticians for common tests, we demonstrate its applicability for several recently proposed asymptotically optimal tests, including tests for robust goodness of fit, homogeneity tests, outlier hypothesis testing, and graphical model estimation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2016.2563439</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8464-4641</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2016-07, Vol.62 (7), p.4285-4299
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_journals_1802221826
source IEEE Electronic Library (IEL)
subjects Approximation
Asymptotic properties
Convergence
Error probability
Errors
Hypothesis testing
Information theory
Mathematical analysis
Optimization
Random variables
Robustness
Sample size
Samples
Statistical analysis
Statistical methods
Testing
Zinc
title Weak Convergence Analysis of Asymptotically Optimal Hypothesis Tests
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20Convergence%20Analysis%20of%20Asymptotically%20Optimal%20Hypothesis%20Tests&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Unnikrishnan,%20Jayakrishnan&rft.date=2016-07&rft.volume=62&rft.issue=7&rft.spage=4285&rft.epage=4299&rft.pages=4285-4299&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2016.2563439&rft_dat=%3Cproquest_RIE%3E1825521161%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1802221826&rft_id=info:pmid/&rft_ieee_id=7465817&rfr_iscdi=true