Weak Convergence Analysis of Asymptotically Optimal Hypothesis Tests
In recent years, solutions to various hypothesis testing problems in the asymptotic setting have been proposed using the results from large deviation theory. Such tests are optimal in terms of appropriately defined error exponents. For the practitioner, however, error probabilities in the finite sam...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2016-07, Vol.62 (7), p.4285-4299 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4299 |
---|---|
container_issue | 7 |
container_start_page | 4285 |
container_title | IEEE transactions on information theory |
container_volume | 62 |
creator | Unnikrishnan, Jayakrishnan Dayu Huang |
description | In recent years, solutions to various hypothesis testing problems in the asymptotic setting have been proposed using the results from large deviation theory. Such tests are optimal in terms of appropriately defined error exponents. For the practitioner, however, error probabilities in the finite sample size setting are more important. In this paper, we show how results on weak convergence of the test statistic can be used to obtain better approximations for the error probabilities in the finite sample size setting. While this technique is popular among statisticians for common tests, we demonstrate its applicability for several recently proposed asymptotically optimal tests, including tests for robust goodness of fit, homogeneity tests, outlier hypothesis testing, and graphical model estimation. |
doi_str_mv | 10.1109/TIT.2016.2563439 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1802221826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7465817</ieee_id><sourcerecordid>1825521161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-cfa4a0ac0eacd76f2b22afb8ce5ce4c3b70fa7d3f5f0203edaa6c0c452e2ed2c3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFbvgpeAFy-p-53kWOpHC4VeIh6X7WZWU9Ns3E2F_Hs3tHjwNAw87wzvg9AtwTNCcPFYrsoZxUTOqJCMs-IMTYgQWVpIwc_RBGOSpwXn-SW6CmEXVy4InaCnd9BfycK1P-A_oDWQzFvdDKEOibPJPAz7rnd9bXTTDMmm6-u9bpLl0Ln-E0aohNCHa3RhdRPg5jSn6O3luVws0_XmdbWYr1PDCtynxmqusTYYtKkyaemWUm23uQFhgBu2zbDVWcWssJhiBpXW0mDDBQUKFTVsih6Odzvvvg_xs9rXwUDT6BbcISiSUyEoIZJE9P4funMHH6uNFKaURlZGCh8p410IHqzqfGzoB0WwGrWqqFWNWtVJa4zcHSM1APzhGZciJxn7BUTVdLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1802221826</pqid></control><display><type>article</type><title>Weak Convergence Analysis of Asymptotically Optimal Hypothesis Tests</title><source>IEEE Electronic Library (IEL)</source><creator>Unnikrishnan, Jayakrishnan ; Dayu Huang</creator><creatorcontrib>Unnikrishnan, Jayakrishnan ; Dayu Huang</creatorcontrib><description>In recent years, solutions to various hypothesis testing problems in the asymptotic setting have been proposed using the results from large deviation theory. Such tests are optimal in terms of appropriately defined error exponents. For the practitioner, however, error probabilities in the finite sample size setting are more important. In this paper, we show how results on weak convergence of the test statistic can be used to obtain better approximations for the error probabilities in the finite sample size setting. While this technique is popular among statisticians for common tests, we demonstrate its applicability for several recently proposed asymptotically optimal tests, including tests for robust goodness of fit, homogeneity tests, outlier hypothesis testing, and graphical model estimation.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2016.2563439</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Asymptotic properties ; Convergence ; Error probability ; Errors ; Hypothesis testing ; Information theory ; Mathematical analysis ; Optimization ; Random variables ; Robustness ; Sample size ; Samples ; Statistical analysis ; Statistical methods ; Testing ; Zinc</subject><ispartof>IEEE transactions on information theory, 2016-07, Vol.62 (7), p.4285-4299</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-cfa4a0ac0eacd76f2b22afb8ce5ce4c3b70fa7d3f5f0203edaa6c0c452e2ed2c3</citedby><cites>FETCH-LOGICAL-c390t-cfa4a0ac0eacd76f2b22afb8ce5ce4c3b70fa7d3f5f0203edaa6c0c452e2ed2c3</cites><orcidid>0000-0002-8464-4641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7465817$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7465817$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Unnikrishnan, Jayakrishnan</creatorcontrib><creatorcontrib>Dayu Huang</creatorcontrib><title>Weak Convergence Analysis of Asymptotically Optimal Hypothesis Tests</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>In recent years, solutions to various hypothesis testing problems in the asymptotic setting have been proposed using the results from large deviation theory. Such tests are optimal in terms of appropriately defined error exponents. For the practitioner, however, error probabilities in the finite sample size setting are more important. In this paper, we show how results on weak convergence of the test statistic can be used to obtain better approximations for the error probabilities in the finite sample size setting. While this technique is popular among statisticians for common tests, we demonstrate its applicability for several recently proposed asymptotically optimal tests, including tests for robust goodness of fit, homogeneity tests, outlier hypothesis testing, and graphical model estimation.</description><subject>Approximation</subject><subject>Asymptotic properties</subject><subject>Convergence</subject><subject>Error probability</subject><subject>Errors</subject><subject>Hypothesis testing</subject><subject>Information theory</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Random variables</subject><subject>Robustness</subject><subject>Sample size</subject><subject>Samples</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Testing</subject><subject>Zinc</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRsFbvgpeAFy-p-53kWOpHC4VeIh6X7WZWU9Ns3E2F_Hs3tHjwNAw87wzvg9AtwTNCcPFYrsoZxUTOqJCMs-IMTYgQWVpIwc_RBGOSpwXn-SW6CmEXVy4InaCnd9BfycK1P-A_oDWQzFvdDKEOibPJPAz7rnd9bXTTDMmm6-u9bpLl0Ln-E0aohNCHa3RhdRPg5jSn6O3luVws0_XmdbWYr1PDCtynxmqusTYYtKkyaemWUm23uQFhgBu2zbDVWcWssJhiBpXW0mDDBQUKFTVsih6Odzvvvg_xs9rXwUDT6BbcISiSUyEoIZJE9P4funMHH6uNFKaURlZGCh8p410IHqzqfGzoB0WwGrWqqFWNWtVJa4zcHSM1APzhGZciJxn7BUTVdLQ</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Unnikrishnan, Jayakrishnan</creator><creator>Dayu Huang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-8464-4641</orcidid></search><sort><creationdate>201607</creationdate><title>Weak Convergence Analysis of Asymptotically Optimal Hypothesis Tests</title><author>Unnikrishnan, Jayakrishnan ; Dayu Huang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-cfa4a0ac0eacd76f2b22afb8ce5ce4c3b70fa7d3f5f0203edaa6c0c452e2ed2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Asymptotic properties</topic><topic>Convergence</topic><topic>Error probability</topic><topic>Errors</topic><topic>Hypothesis testing</topic><topic>Information theory</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Random variables</topic><topic>Robustness</topic><topic>Sample size</topic><topic>Samples</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Testing</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Unnikrishnan, Jayakrishnan</creatorcontrib><creatorcontrib>Dayu Huang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Unnikrishnan, Jayakrishnan</au><au>Dayu Huang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak Convergence Analysis of Asymptotically Optimal Hypothesis Tests</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2016-07</date><risdate>2016</risdate><volume>62</volume><issue>7</issue><spage>4285</spage><epage>4299</epage><pages>4285-4299</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>In recent years, solutions to various hypothesis testing problems in the asymptotic setting have been proposed using the results from large deviation theory. Such tests are optimal in terms of appropriately defined error exponents. For the practitioner, however, error probabilities in the finite sample size setting are more important. In this paper, we show how results on weak convergence of the test statistic can be used to obtain better approximations for the error probabilities in the finite sample size setting. While this technique is popular among statisticians for common tests, we demonstrate its applicability for several recently proposed asymptotically optimal tests, including tests for robust goodness of fit, homogeneity tests, outlier hypothesis testing, and graphical model estimation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2016.2563439</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8464-4641</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2016-07, Vol.62 (7), p.4285-4299 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_journals_1802221826 |
source | IEEE Electronic Library (IEL) |
subjects | Approximation Asymptotic properties Convergence Error probability Errors Hypothesis testing Information theory Mathematical analysis Optimization Random variables Robustness Sample size Samples Statistical analysis Statistical methods Testing Zinc |
title | Weak Convergence Analysis of Asymptotically Optimal Hypothesis Tests |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20Convergence%20Analysis%20of%20Asymptotically%20Optimal%20Hypothesis%20Tests&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Unnikrishnan,%20Jayakrishnan&rft.date=2016-07&rft.volume=62&rft.issue=7&rft.spage=4285&rft.epage=4299&rft.pages=4285-4299&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2016.2563439&rft_dat=%3Cproquest_RIE%3E1825521161%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1802221826&rft_id=info:pmid/&rft_ieee_id=7465817&rfr_iscdi=true |