Characteristics of radiation porosity and structural phase state of reactor austenitic 07C–16Cr–19Ni–2Mo–2Mn–Ti–Si–V–P–B Steel after neutron irradiation at a temperature of 440–600°C to damaging doses of 36–94 dpa
The phase composition and the characteristics of vacancy voids in cold-worked steel 07C–16Cr–19Ni–2Mo–2Mn–Ti–Si–V–P–B (CW EK164-ID) after neutron irradiation at damaging doses of 36–94 dpa and temperatures of 440–600°C are investigated. In the entire range of damaging doses and temperatures, voids w...
Gespeichert in:
Veröffentlicht in: | Physics of metals and metallography 2016-06, Vol.117 (6), p.611-623 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 623 |
---|---|
container_issue | 6 |
container_start_page | 611 |
container_title | Physics of metals and metallography |
container_volume | 117 |
creator | Portnykh, I. A. Panchenko, V. L. |
description | The phase composition and the characteristics of vacancy voids in cold-worked steel 07C–16Cr–19Ni–2Mo–2Mn–Ti–Si–V–P–B (CW EK164-ID) after neutron irradiation at damaging doses of 36–94 dpa and temperatures of 440–600°C are investigated. In the entire range of damaging doses and temperatures, voids with different sizes are observed in the material. The maximum void size increases with irradiation temperature up to ~550°C, whereas their concentration decreases. At higher irradiation temperatures, almost no coarse voids are observed. The concentration of fine voids (to 10 nm in size) sharply increases with temperature from 440 to 480°C. Further increases in the temperature do not result in the noticeable concentration growth. In the irradiation temperature range of 440–515°C, second phases precipitate (
G
phase, γ’ phase, and complex fcc carbides). At higher irradiation temperatures, there are Laves-phase particles, fine second carbides of the
MC
type, and needle shape precipitates identified as phosphides in the material. |
doi_str_mv | 10.1134/S0031918X16060090 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1801584508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4107796361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2310-3879c324ed0a81d5ee51206226ec80f4c5a34e76ae3b5287150bd7bb624b8d573</originalsourceid><addsrcrecordid>eNp1UUuO1DAQjRBINAMHYGeJdaD8jbOEiJ80fKQeELuoklR6POqOg-0sZjd34CKcgaPMmkPgdCOBhFi4Sqp679UrV1E85vCUc6mebQEkr7n9wg0YgBruFBuutS4Nr-FusVnb5dq_XzyI8QpAKWXkpvjZXGLAPlFwMbk-Mj-ygIPD5PzEZh98dOma4TSwmMLSpyXgns2XGCkXMNGRQFnBB4ZLTDS5rMOgam5vvnHThDXV711O4p0_xinHi7WwXcPn_D7m94JtE9Ge4ZjNsImWFLIDF_64wcSQJTrMFDD7OI5WCjI3b_zje8OSZwMecOemHRt8pOM20mRArdgw48Pi3oj7SI9-57Pi06uXF82b8vzD67fN8_OyF5JDKW1V91IoGgAtHzSR5gKMEIZ6C6PqNUpFlUGSnRa24hq6oeo6I1RnB13Js-LJSXcO_utCMbVXfglTHtlyC1xbpcFmFD-h-vzJMdDYzsEdMFy3HNr1qO0_R80cceLEjJ12FP5S_i_pF2ECr60</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1801584508</pqid></control><display><type>article</type><title>Characteristics of radiation porosity and structural phase state of reactor austenitic 07C–16Cr–19Ni–2Mo–2Mn–Ti–Si–V–P–B Steel after neutron irradiation at a temperature of 440–600°C to damaging doses of 36–94 dpa</title><source>SpringerLink Journals</source><creator>Portnykh, I. A. ; Panchenko, V. L.</creator><creatorcontrib>Portnykh, I. A. ; Panchenko, V. L.</creatorcontrib><description>The phase composition and the characteristics of vacancy voids in cold-worked steel 07C–16Cr–19Ni–2Mo–2Mn–Ti–Si–V–P–B (CW EK164-ID) after neutron irradiation at damaging doses of 36–94 dpa and temperatures of 440–600°C are investigated. In the entire range of damaging doses and temperatures, voids with different sizes are observed in the material. The maximum void size increases with irradiation temperature up to ~550°C, whereas their concentration decreases. At higher irradiation temperatures, almost no coarse voids are observed. The concentration of fine voids (to 10 nm in size) sharply increases with temperature from 440 to 480°C. Further increases in the temperature do not result in the noticeable concentration growth. In the irradiation temperature range of 440–515°C, second phases precipitate (
G
phase, γ’ phase, and complex fcc carbides). At higher irradiation temperatures, there are Laves-phase particles, fine second carbides of the
MC
type, and needle shape precipitates identified as phosphides in the material.</description><identifier>ISSN: 0031-918X</identifier><identifier>EISSN: 1555-6190</identifier><identifier>DOI: 10.1134/S0031918X16060090</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Chemistry and Materials Science ; Materials Science ; Metallic Materials ; Strength and Plasticity</subject><ispartof>Physics of metals and metallography, 2016-06, Vol.117 (6), p.611-623</ispartof><rights>Pleiades Publishing, Ltd. 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2310-3879c324ed0a81d5ee51206226ec80f4c5a34e76ae3b5287150bd7bb624b8d573</citedby><cites>FETCH-LOGICAL-c2310-3879c324ed0a81d5ee51206226ec80f4c5a34e76ae3b5287150bd7bb624b8d573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0031918X16060090$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0031918X16060090$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Portnykh, I. A.</creatorcontrib><creatorcontrib>Panchenko, V. L.</creatorcontrib><title>Characteristics of radiation porosity and structural phase state of reactor austenitic 07C–16Cr–19Ni–2Mo–2Mn–Ti–Si–V–P–B Steel after neutron irradiation at a temperature of 440–600°C to damaging doses of 36–94 dpa</title><title>Physics of metals and metallography</title><addtitle>Phys. Metals Metallogr</addtitle><description>The phase composition and the characteristics of vacancy voids in cold-worked steel 07C–16Cr–19Ni–2Mo–2Mn–Ti–Si–V–P–B (CW EK164-ID) after neutron irradiation at damaging doses of 36–94 dpa and temperatures of 440–600°C are investigated. In the entire range of damaging doses and temperatures, voids with different sizes are observed in the material. The maximum void size increases with irradiation temperature up to ~550°C, whereas their concentration decreases. At higher irradiation temperatures, almost no coarse voids are observed. The concentration of fine voids (to 10 nm in size) sharply increases with temperature from 440 to 480°C. Further increases in the temperature do not result in the noticeable concentration growth. In the irradiation temperature range of 440–515°C, second phases precipitate (
G
phase, γ’ phase, and complex fcc carbides). At higher irradiation temperatures, there are Laves-phase particles, fine second carbides of the
MC
type, and needle shape precipitates identified as phosphides in the material.</description><subject>Chemistry and Materials Science</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Strength and Plasticity</subject><issn>0031-918X</issn><issn>1555-6190</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UUuO1DAQjRBINAMHYGeJdaD8jbOEiJ80fKQeELuoklR6POqOg-0sZjd34CKcgaPMmkPgdCOBhFi4Sqp679UrV1E85vCUc6mebQEkr7n9wg0YgBruFBuutS4Nr-FusVnb5dq_XzyI8QpAKWXkpvjZXGLAPlFwMbk-Mj-ygIPD5PzEZh98dOma4TSwmMLSpyXgns2XGCkXMNGRQFnBB4ZLTDS5rMOgam5vvnHThDXV711O4p0_xinHi7WwXcPn_D7m94JtE9Ge4ZjNsImWFLIDF_64wcSQJTrMFDD7OI5WCjI3b_zje8OSZwMecOemHRt8pOM20mRArdgw48Pi3oj7SI9-57Pi06uXF82b8vzD67fN8_OyF5JDKW1V91IoGgAtHzSR5gKMEIZ6C6PqNUpFlUGSnRa24hq6oeo6I1RnB13Js-LJSXcO_utCMbVXfglTHtlyC1xbpcFmFD-h-vzJMdDYzsEdMFy3HNr1qO0_R80cceLEjJ12FP5S_i_pF2ECr60</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Portnykh, I. A.</creator><creator>Panchenko, V. L.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20160601</creationdate><title>Characteristics of radiation porosity and structural phase state of reactor austenitic 07C–16Cr–19Ni–2Mo–2Mn–Ti–Si–V–P–B Steel after neutron irradiation at a temperature of 440–600°C to damaging doses of 36–94 dpa</title><author>Portnykh, I. A. ; Panchenko, V. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2310-3879c324ed0a81d5ee51206226ec80f4c5a34e76ae3b5287150bd7bb624b8d573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chemistry and Materials Science</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Strength and Plasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Portnykh, I. A.</creatorcontrib><creatorcontrib>Panchenko, V. L.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Physics of metals and metallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Portnykh, I. A.</au><au>Panchenko, V. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characteristics of radiation porosity and structural phase state of reactor austenitic 07C–16Cr–19Ni–2Mo–2Mn–Ti–Si–V–P–B Steel after neutron irradiation at a temperature of 440–600°C to damaging doses of 36–94 dpa</atitle><jtitle>Physics of metals and metallography</jtitle><stitle>Phys. Metals Metallogr</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>117</volume><issue>6</issue><spage>611</spage><epage>623</epage><pages>611-623</pages><issn>0031-918X</issn><eissn>1555-6190</eissn><abstract>The phase composition and the characteristics of vacancy voids in cold-worked steel 07C–16Cr–19Ni–2Mo–2Mn–Ti–Si–V–P–B (CW EK164-ID) after neutron irradiation at damaging doses of 36–94 dpa and temperatures of 440–600°C are investigated. In the entire range of damaging doses and temperatures, voids with different sizes are observed in the material. The maximum void size increases with irradiation temperature up to ~550°C, whereas their concentration decreases. At higher irradiation temperatures, almost no coarse voids are observed. The concentration of fine voids (to 10 nm in size) sharply increases with temperature from 440 to 480°C. Further increases in the temperature do not result in the noticeable concentration growth. In the irradiation temperature range of 440–515°C, second phases precipitate (
G
phase, γ’ phase, and complex fcc carbides). At higher irradiation temperatures, there are Laves-phase particles, fine second carbides of the
MC
type, and needle shape precipitates identified as phosphides in the material.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0031918X16060090</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-918X |
ispartof | Physics of metals and metallography, 2016-06, Vol.117 (6), p.611-623 |
issn | 0031-918X 1555-6190 |
language | eng |
recordid | cdi_proquest_journals_1801584508 |
source | SpringerLink Journals |
subjects | Chemistry and Materials Science Materials Science Metallic Materials Strength and Plasticity |
title | Characteristics of radiation porosity and structural phase state of reactor austenitic 07C–16Cr–19Ni–2Mo–2Mn–Ti–Si–V–P–B Steel after neutron irradiation at a temperature of 440–600°C to damaging doses of 36–94 dpa |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A09%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characteristics%20of%20radiation%20porosity%20and%20structural%20phase%20state%20of%20reactor%20austenitic%2007C%E2%80%9316Cr%E2%80%9319Ni%E2%80%932Mo%E2%80%932Mn%E2%80%93Ti%E2%80%93Si%E2%80%93V%E2%80%93P%E2%80%93B%20Steel%20after%20neutron%20irradiation%20at%20a%20temperature%20of%20440%E2%80%93600%C2%B0C%20to%20damaging%20doses%20of%2036%E2%80%9394%20dpa&rft.jtitle=Physics%20of%20metals%20and%20metallography&rft.au=Portnykh,%20I.%20A.&rft.date=2016-06-01&rft.volume=117&rft.issue=6&rft.spage=611&rft.epage=623&rft.pages=611-623&rft.issn=0031-918X&rft.eissn=1555-6190&rft_id=info:doi/10.1134/S0031918X16060090&rft_dat=%3Cproquest_cross%3E4107796361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1801584508&rft_id=info:pmid/&rfr_iscdi=true |