Towards Quantitative Visual Analytics with Structured Brushing and Linked Statistics

Until now a lot of visual analytics predominantly delivers qualitative results—based, for example, on a continuous color map or a detailed spatial encoding. Important target applications, however, such as medical diagnosis and decision making, clearly benefit from quantitative analysis results. In t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum 2016-06, Vol.35 (3), p.251-260
Hauptverfasser: Radoš, S., Splechtna, R., Matković, K., Đuras, M., Gröller, E., Hauser, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 260
container_issue 3
container_start_page 251
container_title Computer graphics forum
container_volume 35
creator Radoš, S.
Splechtna, R.
Matković, K.
Đuras, M.
Gröller, E.
Hauser, H.
description Until now a lot of visual analytics predominantly delivers qualitative results—based, for example, on a continuous color map or a detailed spatial encoding. Important target applications, however, such as medical diagnosis and decision making, clearly benefit from quantitative analysis results. In this paper we propose several specific extensions to the well‐established concept of linking&brushing in order to make the analysis results more quantitative. We structure the brushing space in order to improve the reproducibility of the brushing operation, e.g., by introducing the percentile grid. We also enhance the linked visualization with overlaid descriptive statistics to enable a more quantitative reading of the resulting focus+context visualization. Additionally, we introduce two novel brushing techniques: the percentile brush and the Mahalanobis brush. Both use the underlying data to support statistically meaningful interactions with the data. We illustrate the use of the new techniques in the context of two case studies, one based on meteorological data and the other one focused on data from the automotive industry where we evaluate a shaft design in the context of mechanical power transmission in cars.
doi_str_mv 10.1111/cgf.12901
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1801479001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4107220391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3351-28378fec98ba393a788979b3ab778129c747df840eb62b9369698b77bcd966823</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqVw4A0iceKQ1o4T_xxLoS2iAkFLOVqO47QuISl2Qunb4xLgxl52tfpmtTMAnCPYQ776apn3UMQhOgAdFBMaMpLwQ9CByM8UJskxOHFuDSGMKUk6YD6vttJmLnhsZFmbWtbmQwcL4xpZBINSFrvaKBdsTb0KZrVtVN1YnQVXtnErUy4DWWbB1JSvfjfbi90ePwVHuSycPvvpXfA8upkPJ-H0YXw7HExDhXGCwohhynKtOEsl5lhSxjjlKZYppcybUDSmWc5iqFMSpRwTTjxKaaoyTgiLcBdctHc3tnpvtKvFumqsf9oJxCCKKYcQeeqypZStnLM6Fxtr3qTdCQTFPjThQxPfoXm237JbU-jd_6AYjke_irBVeOv6808h7asgFNNEvNyPxfXTYkLRHRIL_AVmunx3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1801479001</pqid></control><display><type>article</type><title>Towards Quantitative Visual Analytics with Structured Brushing and Linked Statistics</title><source>Wiley Online Library</source><source>EBSCOhost Business Source Complete</source><creator>Radoš, S. ; Splechtna, R. ; Matković, K. ; Đuras, M. ; Gröller, E. ; Hauser, H.</creator><creatorcontrib>Radoš, S. ; Splechtna, R. ; Matković, K. ; Đuras, M. ; Gröller, E. ; Hauser, H.</creatorcontrib><description>Until now a lot of visual analytics predominantly delivers qualitative results—based, for example, on a continuous color map or a detailed spatial encoding. Important target applications, however, such as medical diagnosis and decision making, clearly benefit from quantitative analysis results. In this paper we propose several specific extensions to the well‐established concept of linking&amp;brushing in order to make the analysis results more quantitative. We structure the brushing space in order to improve the reproducibility of the brushing operation, e.g., by introducing the percentile grid. We also enhance the linked visualization with overlaid descriptive statistics to enable a more quantitative reading of the resulting focus+context visualization. Additionally, we introduce two novel brushing techniques: the percentile brush and the Mahalanobis brush. Both use the underlying data to support statistically meaningful interactions with the data. We illustrate the use of the new techniques in the context of two case studies, one based on meteorological data and the other one focused on data from the automotive industry where we evaluate a shaft design in the context of mechanical power transmission in cars.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.12901</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Analysis ; Categories and Subject Descriptors (according to ACM CCS) ; Computer graphics ; I.3.6 [Computer Graphics]: Methodology and Techniques-Interaction techniques ; Medical diagnosis ; Studies ; Visualization</subject><ispartof>Computer graphics forum, 2016-06, Vol.35 (3), p.251-260</ispartof><rights>2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley &amp; Sons Ltd. Published by John Wiley &amp; Sons Ltd.</rights><rights>2016 The Eurographics Association and John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3351-28378fec98ba393a788979b3ab778129c747df840eb62b9369698b77bcd966823</citedby><cites>FETCH-LOGICAL-c3351-28378fec98ba393a788979b3ab778129c747df840eb62b9369698b77bcd966823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcgf.12901$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcgf.12901$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Radoš, S.</creatorcontrib><creatorcontrib>Splechtna, R.</creatorcontrib><creatorcontrib>Matković, K.</creatorcontrib><creatorcontrib>Đuras, M.</creatorcontrib><creatorcontrib>Gröller, E.</creatorcontrib><creatorcontrib>Hauser, H.</creatorcontrib><title>Towards Quantitative Visual Analytics with Structured Brushing and Linked Statistics</title><title>Computer graphics forum</title><addtitle>Computer Graphics Forum</addtitle><description>Until now a lot of visual analytics predominantly delivers qualitative results—based, for example, on a continuous color map or a detailed spatial encoding. Important target applications, however, such as medical diagnosis and decision making, clearly benefit from quantitative analysis results. In this paper we propose several specific extensions to the well‐established concept of linking&amp;brushing in order to make the analysis results more quantitative. We structure the brushing space in order to improve the reproducibility of the brushing operation, e.g., by introducing the percentile grid. We also enhance the linked visualization with overlaid descriptive statistics to enable a more quantitative reading of the resulting focus+context visualization. Additionally, we introduce two novel brushing techniques: the percentile brush and the Mahalanobis brush. Both use the underlying data to support statistically meaningful interactions with the data. We illustrate the use of the new techniques in the context of two case studies, one based on meteorological data and the other one focused on data from the automotive industry where we evaluate a shaft design in the context of mechanical power transmission in cars.</description><subject>Analysis</subject><subject>Categories and Subject Descriptors (according to ACM CCS)</subject><subject>Computer graphics</subject><subject>I.3.6 [Computer Graphics]: Methodology and Techniques-Interaction techniques</subject><subject>Medical diagnosis</subject><subject>Studies</subject><subject>Visualization</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqVw4A0iceKQ1o4T_xxLoS2iAkFLOVqO47QuISl2Qunb4xLgxl52tfpmtTMAnCPYQ776apn3UMQhOgAdFBMaMpLwQ9CByM8UJskxOHFuDSGMKUk6YD6vttJmLnhsZFmbWtbmQwcL4xpZBINSFrvaKBdsTb0KZrVtVN1YnQVXtnErUy4DWWbB1JSvfjfbi90ePwVHuSycPvvpXfA8upkPJ-H0YXw7HExDhXGCwohhynKtOEsl5lhSxjjlKZYppcybUDSmWc5iqFMSpRwTTjxKaaoyTgiLcBdctHc3tnpvtKvFumqsf9oJxCCKKYcQeeqypZStnLM6Fxtr3qTdCQTFPjThQxPfoXm237JbU-jd_6AYjke_irBVeOv6808h7asgFNNEvNyPxfXTYkLRHRIL_AVmunx3</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Radoš, S.</creator><creator>Splechtna, R.</creator><creator>Matković, K.</creator><creator>Đuras, M.</creator><creator>Gröller, E.</creator><creator>Hauser, H.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201606</creationdate><title>Towards Quantitative Visual Analytics with Structured Brushing and Linked Statistics</title><author>Radoš, S. ; Splechtna, R. ; Matković, K. ; Đuras, M. ; Gröller, E. ; Hauser, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3351-28378fec98ba393a788979b3ab778129c747df840eb62b9369698b77bcd966823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis</topic><topic>Categories and Subject Descriptors (according to ACM CCS)</topic><topic>Computer graphics</topic><topic>I.3.6 [Computer Graphics]: Methodology and Techniques-Interaction techniques</topic><topic>Medical diagnosis</topic><topic>Studies</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radoš, S.</creatorcontrib><creatorcontrib>Splechtna, R.</creatorcontrib><creatorcontrib>Matković, K.</creatorcontrib><creatorcontrib>Đuras, M.</creatorcontrib><creatorcontrib>Gröller, E.</creatorcontrib><creatorcontrib>Hauser, H.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radoš, S.</au><au>Splechtna, R.</au><au>Matković, K.</au><au>Đuras, M.</au><au>Gröller, E.</au><au>Hauser, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Quantitative Visual Analytics with Structured Brushing and Linked Statistics</atitle><jtitle>Computer graphics forum</jtitle><addtitle>Computer Graphics Forum</addtitle><date>2016-06</date><risdate>2016</risdate><volume>35</volume><issue>3</issue><spage>251</spage><epage>260</epage><pages>251-260</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>Until now a lot of visual analytics predominantly delivers qualitative results—based, for example, on a continuous color map or a detailed spatial encoding. Important target applications, however, such as medical diagnosis and decision making, clearly benefit from quantitative analysis results. In this paper we propose several specific extensions to the well‐established concept of linking&amp;brushing in order to make the analysis results more quantitative. We structure the brushing space in order to improve the reproducibility of the brushing operation, e.g., by introducing the percentile grid. We also enhance the linked visualization with overlaid descriptive statistics to enable a more quantitative reading of the resulting focus+context visualization. Additionally, we introduce two novel brushing techniques: the percentile brush and the Mahalanobis brush. Both use the underlying data to support statistically meaningful interactions with the data. We illustrate the use of the new techniques in the context of two case studies, one based on meteorological data and the other one focused on data from the automotive industry where we evaluate a shaft design in the context of mechanical power transmission in cars.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.12901</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-7055
ispartof Computer graphics forum, 2016-06, Vol.35 (3), p.251-260
issn 0167-7055
1467-8659
language eng
recordid cdi_proquest_journals_1801479001
source Wiley Online Library; EBSCOhost Business Source Complete
subjects Analysis
Categories and Subject Descriptors (according to ACM CCS)
Computer graphics
I.3.6 [Computer Graphics]: Methodology and Techniques-Interaction techniques
Medical diagnosis
Studies
Visualization
title Towards Quantitative Visual Analytics with Structured Brushing and Linked Statistics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A08%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Quantitative%20Visual%20Analytics%20with%20Structured%20Brushing%20and%20Linked%20Statistics&rft.jtitle=Computer%20graphics%20forum&rft.au=Rado%C5%A1,%20S.&rft.date=2016-06&rft.volume=35&rft.issue=3&rft.spage=251&rft.epage=260&rft.pages=251-260&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.12901&rft_dat=%3Cproquest_cross%3E4107220391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1801479001&rft_id=info:pmid/&rfr_iscdi=true