The influence of fines content and size-ratio on the micro-scale properties of dense bimodal materials

This paper considers factors influencing the fabric of bimodal or gap-graded soils. Discrete element method simulations were carried out in which the volumetric fines content and the size ratio between coarse and fine particles were systematically varied. Frictionless particles were used during isot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Granular matter 2016-08, Vol.18 (3), p.1, Article 52
Hauptverfasser: Shire, T., O’Sullivan, C., Hanley, K. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 1
container_title Granular matter
container_volume 18
creator Shire, T.
O’Sullivan, C.
Hanley, K. J.
description This paper considers factors influencing the fabric of bimodal or gap-graded soils. Discrete element method simulations were carried out in which the volumetric fines content and the size ratio between coarse and fine particles were systematically varied. Frictionless particles were used during isotropic compression to create dense samples; the coefficient of friction was then set to match that of spherical glass beads. The particle-scale data generated in the simulations revealed key size ratios and fines contents at which transitions in soil fabric occur. These transitions are identified from changes in the contact distributions and stress-transfer characteristics of the soils and by changes in the size of the void space between the coarse particles. The results are broadly in agreement with available experimental data on minimum void ratio and contact distributions. The results have implications for engineering applications including assessment of the internal stability of gap-graded soils in embankment dams and flood embankments.
doi_str_mv 10.1007/s10035-016-0654-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1799328667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4099787601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-177a2dd3f5fabc6f42a470c516e24f2aaa46cbaea3b26d4ce65590f3c27c520e3</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EEqXwA9gsMRtsxw8yooqXVImlzJbjXIOrxC52OsCvx1U6sLDcc4fz3cdB6JrRW0apviu1NpJQpghVUpD2BC2YaATRqlGnx15Szs7RRSlbSplsmV4gv_kEHKIf9hAd4OSxDxEKdilOECdsY49L-AGS7RQSThFPFRiDy4kUZwfAu5x2kKdQoUr3EAvgLoyptwMe7QQ52KFcojNfBa6OukTvT4-b1QtZvz2_rh7WxAkuJ8K0trzvGy-97ZzygluhqZNMAReeW2uFcp0F23Rc9cKBkrKlvnFcO8kpNEt0M8-tV33toUxmm_Y51pWG6bZt-L1SurrY7KpflJLBm10Oo83fhlFziNPMcZoapznEadrK8Jkp1Rs_IP-Z_C_0Cxi6eS8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1799328667</pqid></control><display><type>article</type><title>The influence of fines content and size-ratio on the micro-scale properties of dense bimodal materials</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shire, T. ; O’Sullivan, C. ; Hanley, K. J.</creator><creatorcontrib>Shire, T. ; O’Sullivan, C. ; Hanley, K. J.</creatorcontrib><description>This paper considers factors influencing the fabric of bimodal or gap-graded soils. Discrete element method simulations were carried out in which the volumetric fines content and the size ratio between coarse and fine particles were systematically varied. Frictionless particles were used during isotropic compression to create dense samples; the coefficient of friction was then set to match that of spherical glass beads. The particle-scale data generated in the simulations revealed key size ratios and fines contents at which transitions in soil fabric occur. These transitions are identified from changes in the contact distributions and stress-transfer characteristics of the soils and by changes in the size of the void space between the coarse particles. The results are broadly in agreement with available experimental data on minimum void ratio and contact distributions. The results have implications for engineering applications including assessment of the internal stability of gap-graded soils in embankment dams and flood embankments.</description><identifier>ISSN: 1434-5021</identifier><identifier>EISSN: 1434-7636</identifier><identifier>DOI: 10.1007/s10035-016-0654-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complex Fluids and Microfluidics ; Discrete element method ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Foundations ; Geoengineering ; Granular materials ; Heat and Mass Transfer ; Hydraulics ; Industrial Chemistry/Chemical Engineering ; Materials Science ; Micro origins for macro behavior of granular matter ; Original Paper ; Physics ; Physics and Astronomy ; Soft and Granular Matter ; Soils ; Volumetric analysis</subject><ispartof>Granular matter, 2016-08, Vol.18 (3), p.1, Article 52</ispartof><rights>The Author(s) 2016</rights><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-177a2dd3f5fabc6f42a470c516e24f2aaa46cbaea3b26d4ce65590f3c27c520e3</citedby><cites>FETCH-LOGICAL-c425t-177a2dd3f5fabc6f42a470c516e24f2aaa46cbaea3b26d4ce65590f3c27c520e3</cites><orcidid>0000-0002-0935-1910 ; 0000-0002-8005-5057</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10035-016-0654-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10035-016-0654-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Shire, T.</creatorcontrib><creatorcontrib>O’Sullivan, C.</creatorcontrib><creatorcontrib>Hanley, K. J.</creatorcontrib><title>The influence of fines content and size-ratio on the micro-scale properties of dense bimodal materials</title><title>Granular matter</title><addtitle>Granular Matter</addtitle><description>This paper considers factors influencing the fabric of bimodal or gap-graded soils. Discrete element method simulations were carried out in which the volumetric fines content and the size ratio between coarse and fine particles were systematically varied. Frictionless particles were used during isotropic compression to create dense samples; the coefficient of friction was then set to match that of spherical glass beads. The particle-scale data generated in the simulations revealed key size ratios and fines contents at which transitions in soil fabric occur. These transitions are identified from changes in the contact distributions and stress-transfer characteristics of the soils and by changes in the size of the void space between the coarse particles. The results are broadly in agreement with available experimental data on minimum void ratio and contact distributions. The results have implications for engineering applications including assessment of the internal stability of gap-graded soils in embankment dams and flood embankments.</description><subject>Complex Fluids and Microfluidics</subject><subject>Discrete element method</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Foundations</subject><subject>Geoengineering</subject><subject>Granular materials</subject><subject>Heat and Mass Transfer</subject><subject>Hydraulics</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Materials Science</subject><subject>Micro origins for macro behavior of granular matter</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Soft and Granular Matter</subject><subject>Soils</subject><subject>Volumetric analysis</subject><issn>1434-5021</issn><issn>1434-7636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kDtPwzAUhS0EEqXwA9gsMRtsxw8yooqXVImlzJbjXIOrxC52OsCvx1U6sLDcc4fz3cdB6JrRW0apviu1NpJQpghVUpD2BC2YaATRqlGnx15Szs7RRSlbSplsmV4gv_kEHKIf9hAd4OSxDxEKdilOECdsY49L-AGS7RQSThFPFRiDy4kUZwfAu5x2kKdQoUr3EAvgLoyptwMe7QQ52KFcojNfBa6OukTvT4-b1QtZvz2_rh7WxAkuJ8K0trzvGy-97ZzygluhqZNMAReeW2uFcp0F23Rc9cKBkrKlvnFcO8kpNEt0M8-tV33toUxmm_Y51pWG6bZt-L1SurrY7KpflJLBm10Oo83fhlFziNPMcZoapznEadrK8Jkp1Rs_IP-Z_C_0Cxi6eS8</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Shire, T.</creator><creator>O’Sullivan, C.</creator><creator>Hanley, K. J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0935-1910</orcidid><orcidid>https://orcid.org/0000-0002-8005-5057</orcidid></search><sort><creationdate>20160801</creationdate><title>The influence of fines content and size-ratio on the micro-scale properties of dense bimodal materials</title><author>Shire, T. ; O’Sullivan, C. ; Hanley, K. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-177a2dd3f5fabc6f42a470c516e24f2aaa46cbaea3b26d4ce65590f3c27c520e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Complex Fluids and Microfluidics</topic><topic>Discrete element method</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Foundations</topic><topic>Geoengineering</topic><topic>Granular materials</topic><topic>Heat and Mass Transfer</topic><topic>Hydraulics</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Materials Science</topic><topic>Micro origins for macro behavior of granular matter</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Soft and Granular Matter</topic><topic>Soils</topic><topic>Volumetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shire, T.</creatorcontrib><creatorcontrib>O’Sullivan, C.</creatorcontrib><creatorcontrib>Hanley, K. J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Granular matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shire, T.</au><au>O’Sullivan, C.</au><au>Hanley, K. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of fines content and size-ratio on the micro-scale properties of dense bimodal materials</atitle><jtitle>Granular matter</jtitle><stitle>Granular Matter</stitle><date>2016-08-01</date><risdate>2016</risdate><volume>18</volume><issue>3</issue><spage>1</spage><pages>1-</pages><artnum>52</artnum><issn>1434-5021</issn><eissn>1434-7636</eissn><abstract>This paper considers factors influencing the fabric of bimodal or gap-graded soils. Discrete element method simulations were carried out in which the volumetric fines content and the size ratio between coarse and fine particles were systematically varied. Frictionless particles were used during isotropic compression to create dense samples; the coefficient of friction was then set to match that of spherical glass beads. The particle-scale data generated in the simulations revealed key size ratios and fines contents at which transitions in soil fabric occur. These transitions are identified from changes in the contact distributions and stress-transfer characteristics of the soils and by changes in the size of the void space between the coarse particles. The results are broadly in agreement with available experimental data on minimum void ratio and contact distributions. The results have implications for engineering applications including assessment of the internal stability of gap-graded soils in embankment dams and flood embankments.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10035-016-0654-9</doi><orcidid>https://orcid.org/0000-0002-0935-1910</orcidid><orcidid>https://orcid.org/0000-0002-8005-5057</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-5021
ispartof Granular matter, 2016-08, Vol.18 (3), p.1, Article 52
issn 1434-5021
1434-7636
language eng
recordid cdi_proquest_journals_1799328667
source SpringerLink Journals - AutoHoldings
subjects Complex Fluids and Microfluidics
Discrete element method
Engineering Fluid Dynamics
Engineering Thermodynamics
Foundations
Geoengineering
Granular materials
Heat and Mass Transfer
Hydraulics
Industrial Chemistry/Chemical Engineering
Materials Science
Micro origins for macro behavior of granular matter
Original Paper
Physics
Physics and Astronomy
Soft and Granular Matter
Soils
Volumetric analysis
title The influence of fines content and size-ratio on the micro-scale properties of dense bimodal materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20fines%20content%20and%20size-ratio%20on%20the%20micro-scale%20properties%20of%20dense%20bimodal%20materials&rft.jtitle=Granular%20matter&rft.au=Shire,%20T.&rft.date=2016-08-01&rft.volume=18&rft.issue=3&rft.spage=1&rft.pages=1-&rft.artnum=52&rft.issn=1434-5021&rft.eissn=1434-7636&rft_id=info:doi/10.1007/s10035-016-0654-9&rft_dat=%3Cproquest_cross%3E4099787601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1799328667&rft_id=info:pmid/&rfr_iscdi=true