Transient Instability Mitigation for Complex Contingencies With Computationally Constrained Cost-Based Control

Transient stability controller design based on an optimality principle is an emerging approach for resolving high order contingencies that can otherwise lead to rotor angle instability. It is difficult to design for high order contingencies due to their complexity. A challenging issue is the nonline...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2016-07, Vol.7 (4), p.1961-1969
Hauptverfasser: Zweigle, Gregary C., Venkatasubramanian, Vaithianathan Mani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1969
container_issue 4
container_start_page 1961
container_title IEEE transactions on smart grid
container_volume 7
creator Zweigle, Gregary C.
Venkatasubramanian, Vaithianathan Mani
description Transient stability controller design based on an optimality principle is an emerging approach for resolving high order contingencies that can otherwise lead to rotor angle instability. It is difficult to design for high order contingencies due to their complexity. A challenging issue is the nonlinearity of the system, which limits the selection approaches available and results in a potentially large search space to find a suitable control action. Because rotor angle instability evolves rapidly, a fast control response is required. This paper develops a cost-based controller under the constraint of bounded computation. A method to downsize the admissible control search space is developed in a manner that retains controls most likely to provide the best cost. Subsequently, a further reduction in computation is designed through model elimination. A set of common cost metrics is applied for all controllers. Tradeoffs between the model-based and model-free approaches are demonstrated. The effect of computational constraints on the competing goals of control cost and control timeliness for complex contingencies is tested with the New England 39-bus system.
doi_str_mv 10.1109/TSG.2016.2536061
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1798894070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7433477</ieee_id><sourcerecordid>1825521334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-f9c80452d61ea2a2e7f21ab02a019fbb93d45e539bd5fe9618689ea3f2d635633</originalsourceid><addsrcrecordid>eNpdkc1LAzEQxRdRsGjvgpcFL1625mOT3Ry1aC1UPFjxGLK7k5qSZmuSgv3vTT_owbnMg_m9GYaXZTcYjTBG4mH-MRkRhPmIMMoRx2fZAItSFDTp85Nm9DIbhrBEqSilnIhB5uZeuWDAxXzqQlSNsSZu8zcTzUJF07tc9z4f96u1hd_UXTRuAa41EPIvE7_3o03co8ra7Q4J0SvjoEs6xOJJhb100ff2OrvQygYYHvtV9vnyPB-_FrP3yXT8OCtaKspYaNHWqGSk4xgUUQQqTbBqEFEIC900gnYlA0ZF0zENguOa1wIU1clBGaf0Krs_7F37_mcDIcqVCS1Yqxz0myBxTRgjmNIyoXf_0GW_8emZRFWirkWJKpQodKBa34fgQcu1NyvltxIjuctApgzkLgN5zCBZbg8WAwAnvCrT0aqifyWxg2M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1798894070</pqid></control><display><type>article</type><title>Transient Instability Mitigation for Complex Contingencies With Computationally Constrained Cost-Based Control</title><source>IEEE Electronic Library (IEL)</source><creator>Zweigle, Gregary C. ; Venkatasubramanian, Vaithianathan Mani</creator><creatorcontrib>Zweigle, Gregary C. ; Venkatasubramanian, Vaithianathan Mani</creatorcontrib><description>Transient stability controller design based on an optimality principle is an emerging approach for resolving high order contingencies that can otherwise lead to rotor angle instability. It is difficult to design for high order contingencies due to their complexity. A challenging issue is the nonlinearity of the system, which limits the selection approaches available and results in a potentially large search space to find a suitable control action. Because rotor angle instability evolves rapidly, a fast control response is required. This paper develops a cost-based controller under the constraint of bounded computation. A method to downsize the admissible control search space is developed in a manner that retains controls most likely to provide the best cost. Subsequently, a further reduction in computation is designed through model elimination. A set of common cost metrics is applied for all controllers. Tradeoffs between the model-based and model-free approaches are demonstrated. The effect of computational constraints on the competing goals of control cost and control timeliness for complex contingencies is tested with the New England 39-bus system.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2016.2536061</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aerospace electronics ; Computation ; Computational modeling ; Contingency ; Control systems ; Controllers ; Design engineering ; Instability ; Measurement ; phasor measurement unit (PMU) ; Power system stability ; Rotors ; Searching ; Stability ; System protection ; Transient analysis ; transient stability ; wide-area control</subject><ispartof>IEEE transactions on smart grid, 2016-07, Vol.7 (4), p.1961-1969</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-f9c80452d61ea2a2e7f21ab02a019fbb93d45e539bd5fe9618689ea3f2d635633</citedby><cites>FETCH-LOGICAL-c394t-f9c80452d61ea2a2e7f21ab02a019fbb93d45e539bd5fe9618689ea3f2d635633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7433477$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7433477$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zweigle, Gregary C.</creatorcontrib><creatorcontrib>Venkatasubramanian, Vaithianathan Mani</creatorcontrib><title>Transient Instability Mitigation for Complex Contingencies With Computationally Constrained Cost-Based Control</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>Transient stability controller design based on an optimality principle is an emerging approach for resolving high order contingencies that can otherwise lead to rotor angle instability. It is difficult to design for high order contingencies due to their complexity. A challenging issue is the nonlinearity of the system, which limits the selection approaches available and results in a potentially large search space to find a suitable control action. Because rotor angle instability evolves rapidly, a fast control response is required. This paper develops a cost-based controller under the constraint of bounded computation. A method to downsize the admissible control search space is developed in a manner that retains controls most likely to provide the best cost. Subsequently, a further reduction in computation is designed through model elimination. A set of common cost metrics is applied for all controllers. Tradeoffs between the model-based and model-free approaches are demonstrated. The effect of computational constraints on the competing goals of control cost and control timeliness for complex contingencies is tested with the New England 39-bus system.</description><subject>Aerospace electronics</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Contingency</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Design engineering</subject><subject>Instability</subject><subject>Measurement</subject><subject>phasor measurement unit (PMU)</subject><subject>Power system stability</subject><subject>Rotors</subject><subject>Searching</subject><subject>Stability</subject><subject>System protection</subject><subject>Transient analysis</subject><subject>transient stability</subject><subject>wide-area control</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc1LAzEQxRdRsGjvgpcFL1625mOT3Ry1aC1UPFjxGLK7k5qSZmuSgv3vTT_owbnMg_m9GYaXZTcYjTBG4mH-MRkRhPmIMMoRx2fZAItSFDTp85Nm9DIbhrBEqSilnIhB5uZeuWDAxXzqQlSNsSZu8zcTzUJF07tc9z4f96u1hd_UXTRuAa41EPIvE7_3o03co8ra7Q4J0SvjoEs6xOJJhb100ff2OrvQygYYHvtV9vnyPB-_FrP3yXT8OCtaKspYaNHWqGSk4xgUUQQqTbBqEFEIC900gnYlA0ZF0zENguOa1wIU1clBGaf0Krs_7F37_mcDIcqVCS1Yqxz0myBxTRgjmNIyoXf_0GW_8emZRFWirkWJKpQodKBa34fgQcu1NyvltxIjuctApgzkLgN5zCBZbg8WAwAnvCrT0aqifyWxg2M</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Zweigle, Gregary C.</creator><creator>Venkatasubramanian, Vaithianathan Mani</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20160701</creationdate><title>Transient Instability Mitigation for Complex Contingencies With Computationally Constrained Cost-Based Control</title><author>Zweigle, Gregary C. ; Venkatasubramanian, Vaithianathan Mani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-f9c80452d61ea2a2e7f21ab02a019fbb93d45e539bd5fe9618689ea3f2d635633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aerospace electronics</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Contingency</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Design engineering</topic><topic>Instability</topic><topic>Measurement</topic><topic>phasor measurement unit (PMU)</topic><topic>Power system stability</topic><topic>Rotors</topic><topic>Searching</topic><topic>Stability</topic><topic>System protection</topic><topic>Transient analysis</topic><topic>transient stability</topic><topic>wide-area control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zweigle, Gregary C.</creatorcontrib><creatorcontrib>Venkatasubramanian, Vaithianathan Mani</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zweigle, Gregary C.</au><au>Venkatasubramanian, Vaithianathan Mani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient Instability Mitigation for Complex Contingencies With Computationally Constrained Cost-Based Control</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2016-07-01</date><risdate>2016</risdate><volume>7</volume><issue>4</issue><spage>1961</spage><epage>1969</epage><pages>1961-1969</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>Transient stability controller design based on an optimality principle is an emerging approach for resolving high order contingencies that can otherwise lead to rotor angle instability. It is difficult to design for high order contingencies due to their complexity. A challenging issue is the nonlinearity of the system, which limits the selection approaches available and results in a potentially large search space to find a suitable control action. Because rotor angle instability evolves rapidly, a fast control response is required. This paper develops a cost-based controller under the constraint of bounded computation. A method to downsize the admissible control search space is developed in a manner that retains controls most likely to provide the best cost. Subsequently, a further reduction in computation is designed through model elimination. A set of common cost metrics is applied for all controllers. Tradeoffs between the model-based and model-free approaches are demonstrated. The effect of computational constraints on the competing goals of control cost and control timeliness for complex contingencies is tested with the New England 39-bus system.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2016.2536061</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2016-07, Vol.7 (4), p.1961-1969
issn 1949-3053
1949-3061
language eng
recordid cdi_proquest_journals_1798894070
source IEEE Electronic Library (IEL)
subjects Aerospace electronics
Computation
Computational modeling
Contingency
Control systems
Controllers
Design engineering
Instability
Measurement
phasor measurement unit (PMU)
Power system stability
Rotors
Searching
Stability
System protection
Transient analysis
transient stability
wide-area control
title Transient Instability Mitigation for Complex Contingencies With Computationally Constrained Cost-Based Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A57%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20Instability%20Mitigation%20for%20Complex%20Contingencies%20With%20Computationally%20Constrained%20Cost-Based%20Control&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Zweigle,%20Gregary%20C.&rft.date=2016-07-01&rft.volume=7&rft.issue=4&rft.spage=1961&rft.epage=1969&rft.pages=1961-1969&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2016.2536061&rft_dat=%3Cproquest_RIE%3E1825521334%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1798894070&rft_id=info:pmid/&rft_ieee_id=7433477&rfr_iscdi=true