Design Optimization of Multipole Galatea Trap Coils by Multiple Population Genetic Algorithm

In order to improve the performance of multipole Galatea traps, this paper proposes an optimized method for the design of coil parameters. Based on an accurate magnetic field model, key parameters describing the multipole Galatea magnetic trap configuration were analyzed to establish an optimization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on plasma science 2016-06, Vol.44 (6), p.1018-1024
Hauptverfasser: Tong, Weiming, Tao, Baoquan, Jin, Xianji, Li, Zhongwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1024
container_issue 6
container_start_page 1018
container_title IEEE transactions on plasma science
container_volume 44
creator Tong, Weiming
Tao, Baoquan
Jin, Xianji
Li, Zhongwei
description In order to improve the performance of multipole Galatea traps, this paper proposes an optimized method for the design of coil parameters. Based on an accurate magnetic field model, key parameters describing the multipole Galatea magnetic trap configuration were analyzed to establish an optimization model using the axial electromagnetic force, weak magnetic field area, and average magnetic mirror ratio as the optimization goals with the coil current as the design variable. Applying the improved multiple population genetic algorithm (MPGA), which has a strong searching ability and a fast convergence speed, enables production of optimization results following selection of the appropriate weight coefficients. Results confirm that optimization design results from MPGA are consistent with the design goals for different weight coefficients. In addition, the performance of multipole Galatea magnetic traps with optimization coil parameters was improved. Finally, the results from finite-element simulation software proved the validity and feasibility of the proposed method.
doi_str_mv 10.1109/TPS.2016.2563978
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1797865793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7476856</ieee_id><sourcerecordid>4094204391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-b3b296241a7ed0e7329f01cbf809b55daffed9cc5d7a668da4327541aac0008b3</originalsourceid><addsrcrecordid>eNpdkM9LwzAYhoMoOKd3wUvBi5fO_Gia5jimTkHZwHkTQtqmMyNtapIe5l9vRocHT9_hfd6XjweAawRnCEF-v1m_zzBE-QzTnHBWnIAJ4oSnnDB6CiYQcpKSApFzcOH9DkKUUYgn4PNBeb3tklUfdKt_ZNC2S2yTvA0m6N4alSylkUHJZONknyysNj4p98c8xmvbD2asLVWngq6Sudlap8NXewnOGmm8ujreKfh4etwsntPX1fJlMX9NK4KzkJakxDzHGZJM1VAxgnkDUVU2BeQlpbVsGlXzqqI1k3le1DIjmNGIywpCWJRkCu7G3d7Z70H5IFrtK2WM7JQdvEAFphnPMCURvf2H7uzguvidQCxqyynjBwqOVOWs9041one6lW4vEBQH3SLqFgfd4qg7Vm7GilZK_eEsY3kRiV_dVXvf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1797865793</pqid></control><display><type>article</type><title>Design Optimization of Multipole Galatea Trap Coils by Multiple Population Genetic Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Tong, Weiming ; Tao, Baoquan ; Jin, Xianji ; Li, Zhongwei</creator><creatorcontrib>Tong, Weiming ; Tao, Baoquan ; Jin, Xianji ; Li, Zhongwei</creatorcontrib><description>In order to improve the performance of multipole Galatea traps, this paper proposes an optimized method for the design of coil parameters. Based on an accurate magnetic field model, key parameters describing the multipole Galatea magnetic trap configuration were analyzed to establish an optimization model using the axial electromagnetic force, weak magnetic field area, and average magnetic mirror ratio as the optimization goals with the coil current as the design variable. Applying the improved multiple population genetic algorithm (MPGA), which has a strong searching ability and a fast convergence speed, enables production of optimization results following selection of the appropriate weight coefficients. Results confirm that optimization design results from MPGA are consistent with the design goals for different weight coefficients. In addition, the performance of multipole Galatea magnetic traps with optimization coil parameters was improved. Finally, the results from finite-element simulation software proved the validity and feasibility of the proposed method.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2016.2563978</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Average magnetic mirror ratio ; axial electromagnetic force ; Coils ; Convergence ; Design analysis ; Design optimization ; Electromagnetic forces ; Galatea ; Genetic algorithms ; Magnetic analysis ; Magnetic fields ; Magnetic levitation ; Mathematical models ; multiple population genetic algorithm (MPGA) ; Multipoles ; Optimization ; Plasmas ; Simulation ; Software ; Superconducting magnets ; weak magnetic field area</subject><ispartof>IEEE transactions on plasma science, 2016-06, Vol.44 (6), p.1018-1024</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-b3b296241a7ed0e7329f01cbf809b55daffed9cc5d7a668da4327541aac0008b3</citedby><cites>FETCH-LOGICAL-c324t-b3b296241a7ed0e7329f01cbf809b55daffed9cc5d7a668da4327541aac0008b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7476856$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7476856$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tong, Weiming</creatorcontrib><creatorcontrib>Tao, Baoquan</creatorcontrib><creatorcontrib>Jin, Xianji</creatorcontrib><creatorcontrib>Li, Zhongwei</creatorcontrib><title>Design Optimization of Multipole Galatea Trap Coils by Multiple Population Genetic Algorithm</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>In order to improve the performance of multipole Galatea traps, this paper proposes an optimized method for the design of coil parameters. Based on an accurate magnetic field model, key parameters describing the multipole Galatea magnetic trap configuration were analyzed to establish an optimization model using the axial electromagnetic force, weak magnetic field area, and average magnetic mirror ratio as the optimization goals with the coil current as the design variable. Applying the improved multiple population genetic algorithm (MPGA), which has a strong searching ability and a fast convergence speed, enables production of optimization results following selection of the appropriate weight coefficients. Results confirm that optimization design results from MPGA are consistent with the design goals for different weight coefficients. In addition, the performance of multipole Galatea magnetic traps with optimization coil parameters was improved. Finally, the results from finite-element simulation software proved the validity and feasibility of the proposed method.</description><subject>Average magnetic mirror ratio</subject><subject>axial electromagnetic force</subject><subject>Coils</subject><subject>Convergence</subject><subject>Design analysis</subject><subject>Design optimization</subject><subject>Electromagnetic forces</subject><subject>Galatea</subject><subject>Genetic algorithms</subject><subject>Magnetic analysis</subject><subject>Magnetic fields</subject><subject>Magnetic levitation</subject><subject>Mathematical models</subject><subject>multiple population genetic algorithm (MPGA)</subject><subject>Multipoles</subject><subject>Optimization</subject><subject>Plasmas</subject><subject>Simulation</subject><subject>Software</subject><subject>Superconducting magnets</subject><subject>weak magnetic field area</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM9LwzAYhoMoOKd3wUvBi5fO_Gia5jimTkHZwHkTQtqmMyNtapIe5l9vRocHT9_hfd6XjweAawRnCEF-v1m_zzBE-QzTnHBWnIAJ4oSnnDB6CiYQcpKSApFzcOH9DkKUUYgn4PNBeb3tklUfdKt_ZNC2S2yTvA0m6N4alSylkUHJZONknyysNj4p98c8xmvbD2asLVWngq6Sudlap8NXewnOGmm8ujreKfh4etwsntPX1fJlMX9NK4KzkJakxDzHGZJM1VAxgnkDUVU2BeQlpbVsGlXzqqI1k3le1DIjmNGIywpCWJRkCu7G3d7Z70H5IFrtK2WM7JQdvEAFphnPMCURvf2H7uzguvidQCxqyynjBwqOVOWs9041one6lW4vEBQH3SLqFgfd4qg7Vm7GilZK_eEsY3kRiV_dVXvf</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Tong, Weiming</creator><creator>Tao, Baoquan</creator><creator>Jin, Xianji</creator><creator>Li, Zhongwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201606</creationdate><title>Design Optimization of Multipole Galatea Trap Coils by Multiple Population Genetic Algorithm</title><author>Tong, Weiming ; Tao, Baoquan ; Jin, Xianji ; Li, Zhongwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-b3b296241a7ed0e7329f01cbf809b55daffed9cc5d7a668da4327541aac0008b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Average magnetic mirror ratio</topic><topic>axial electromagnetic force</topic><topic>Coils</topic><topic>Convergence</topic><topic>Design analysis</topic><topic>Design optimization</topic><topic>Electromagnetic forces</topic><topic>Galatea</topic><topic>Genetic algorithms</topic><topic>Magnetic analysis</topic><topic>Magnetic fields</topic><topic>Magnetic levitation</topic><topic>Mathematical models</topic><topic>multiple population genetic algorithm (MPGA)</topic><topic>Multipoles</topic><topic>Optimization</topic><topic>Plasmas</topic><topic>Simulation</topic><topic>Software</topic><topic>Superconducting magnets</topic><topic>weak magnetic field area</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, Weiming</creatorcontrib><creatorcontrib>Tao, Baoquan</creatorcontrib><creatorcontrib>Jin, Xianji</creatorcontrib><creatorcontrib>Li, Zhongwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tong, Weiming</au><au>Tao, Baoquan</au><au>Jin, Xianji</au><au>Li, Zhongwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design Optimization of Multipole Galatea Trap Coils by Multiple Population Genetic Algorithm</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2016-06</date><risdate>2016</risdate><volume>44</volume><issue>6</issue><spage>1018</spage><epage>1024</epage><pages>1018-1024</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>In order to improve the performance of multipole Galatea traps, this paper proposes an optimized method for the design of coil parameters. Based on an accurate magnetic field model, key parameters describing the multipole Galatea magnetic trap configuration were analyzed to establish an optimization model using the axial electromagnetic force, weak magnetic field area, and average magnetic mirror ratio as the optimization goals with the coil current as the design variable. Applying the improved multiple population genetic algorithm (MPGA), which has a strong searching ability and a fast convergence speed, enables production of optimization results following selection of the appropriate weight coefficients. Results confirm that optimization design results from MPGA are consistent with the design goals for different weight coefficients. In addition, the performance of multipole Galatea magnetic traps with optimization coil parameters was improved. Finally, the results from finite-element simulation software proved the validity and feasibility of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2016.2563978</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2016-06, Vol.44 (6), p.1018-1024
issn 0093-3813
1939-9375
language eng
recordid cdi_proquest_journals_1797865793
source IEEE Electronic Library (IEL)
subjects Average magnetic mirror ratio
axial electromagnetic force
Coils
Convergence
Design analysis
Design optimization
Electromagnetic forces
Galatea
Genetic algorithms
Magnetic analysis
Magnetic fields
Magnetic levitation
Mathematical models
multiple population genetic algorithm (MPGA)
Multipoles
Optimization
Plasmas
Simulation
Software
Superconducting magnets
weak magnetic field area
title Design Optimization of Multipole Galatea Trap Coils by Multiple Population Genetic Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A32%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20Optimization%20of%20Multipole%20Galatea%20Trap%20Coils%20by%20Multiple%20Population%20Genetic%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Tong,%20Weiming&rft.date=2016-06&rft.volume=44&rft.issue=6&rft.spage=1018&rft.epage=1024&rft.pages=1018-1024&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2016.2563978&rft_dat=%3Cproquest_RIE%3E4094204391%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1797865793&rft_id=info:pmid/&rft_ieee_id=7476856&rfr_iscdi=true