Adaptive EKF-Based Vehicle State Estimation With Online Assessment of Local Observability
In this paper, an extended Kalman filter-based estimator adopting a dynamic vehicle model for determining the vehicle's longitudinal and lateral velocity as well as the yaw rate is proposed. Two additional adaptation states are introduced to scale longitudinal and lateral tire forces if necessa...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2016-07, Vol.24 (4), p.1368-1381 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1381 |
---|---|
container_issue | 4 |
container_start_page | 1368 |
container_title | IEEE transactions on control systems technology |
container_volume | 24 |
creator | Katriniok, Alexander Abel, Dirk |
description | In this paper, an extended Kalman filter-based estimator adopting a dynamic vehicle model for determining the vehicle's longitudinal and lateral velocity as well as the yaw rate is proposed. Two additional adaptation states are introduced to scale longitudinal and lateral tire forces if necessary to account for uncertainties in the tire/road contact. As excitation plays a vital role as far as observability is concerned, the suggested approach assesses local observability online and keeps an unobservable adaptation state constant by introducing the respective state as a virtual measurement variable when losing local observability. Furthermore, the filter is part of a Global Navigation Satellite System (GNSS)-based estimation framework. It exploits the availability of a GNSS-based horizontal velocity estimate instead of wheel speeds as aiding measurement, thus being independent of wheel slip. Experimental results for scenarios with different kinds of excitation show the effectiveness of the proposed estimator in the nominal as well as in the perturbed vehicle parameter case requiring filter adaptation. |
doi_str_mv | 10.1109/TCST.2015.2488597 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1796967027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7312940</ieee_id><sourcerecordid>4089801691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-d05ba08fd25c310cd64bafc8cef565d034e595c50771f5031afa1150682e07a93</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhoMo-PkDxMuCFy-ps7uZ3eRYS6tioQer4mnZbiZ0S5rU7Fbovzel4sHTvAzPOwxPklxzGHAOxf189DofCOA4EFmeY6GPkjOOmKeQKzzuMyiZKpTqNDkPYQXAMxT6LPkclnYT_Tex8cskfbCBSvZOS-9qYq_Rxn4fol_b6NuGffi4ZLOm9g2xYQgUwpqayNqKTVtnazZbBOq-7cLXPu4uk5PK1oGufudF8jYZz0dP6XT2-DwaTlMnhYppCbiwkFelQCc5uFJlC1u53FGFCkuQGWGBDkFrXiFIbivLOYLKBYG2hbxI7g53N137taUQzdoHR3VtG2q3wfBcYFZImWGP3v5DV-22a_rvDNeFKpQGoXuKHyjXtSF0VJlN1xvodoaD2cs2e9lmL9v8yu47N4eOJ6I_XksuigzkD78Kee8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1796967027</pqid></control><display><type>article</type><title>Adaptive EKF-Based Vehicle State Estimation With Online Assessment of Local Observability</title><source>IEEE Electronic Library (IEL)</source><creator>Katriniok, Alexander ; Abel, Dirk</creator><creatorcontrib>Katriniok, Alexander ; Abel, Dirk</creatorcontrib><description>In this paper, an extended Kalman filter-based estimator adopting a dynamic vehicle model for determining the vehicle's longitudinal and lateral velocity as well as the yaw rate is proposed. Two additional adaptation states are introduced to scale longitudinal and lateral tire forces if necessary to account for uncertainties in the tire/road contact. As excitation plays a vital role as far as observability is concerned, the suggested approach assesses local observability online and keeps an unobservable adaptation state constant by introducing the respective state as a virtual measurement variable when losing local observability. Furthermore, the filter is part of a Global Navigation Satellite System (GNSS)-based estimation framework. It exploits the availability of a GNSS-based horizontal velocity estimate instead of wheel speeds as aiding measurement, thus being independent of wheel slip. Experimental results for scenarios with different kinds of excitation show the effectiveness of the proposed estimator in the nominal as well as in the perturbed vehicle parameter case requiring filter adaptation.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2015.2488597</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation ; Adaptation models ; Adaptive estimation ; automotive applications ; Automotive components ; Automotive wheels ; Estimation ; Estimators ; Excitation ; Global Positioning System ; Kalman filters ; Mathematical models ; observability ; Tires ; Vehicle dynamics ; Vehicles ; Wheels</subject><ispartof>IEEE transactions on control systems technology, 2016-07, Vol.24 (4), p.1368-1381</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-d05ba08fd25c310cd64bafc8cef565d034e595c50771f5031afa1150682e07a93</citedby><cites>FETCH-LOGICAL-c326t-d05ba08fd25c310cd64bafc8cef565d034e595c50771f5031afa1150682e07a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7312940$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7312940$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Katriniok, Alexander</creatorcontrib><creatorcontrib>Abel, Dirk</creatorcontrib><title>Adaptive EKF-Based Vehicle State Estimation With Online Assessment of Local Observability</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>In this paper, an extended Kalman filter-based estimator adopting a dynamic vehicle model for determining the vehicle's longitudinal and lateral velocity as well as the yaw rate is proposed. Two additional adaptation states are introduced to scale longitudinal and lateral tire forces if necessary to account for uncertainties in the tire/road contact. As excitation plays a vital role as far as observability is concerned, the suggested approach assesses local observability online and keeps an unobservable adaptation state constant by introducing the respective state as a virtual measurement variable when losing local observability. Furthermore, the filter is part of a Global Navigation Satellite System (GNSS)-based estimation framework. It exploits the availability of a GNSS-based horizontal velocity estimate instead of wheel speeds as aiding measurement, thus being independent of wheel slip. Experimental results for scenarios with different kinds of excitation show the effectiveness of the proposed estimator in the nominal as well as in the perturbed vehicle parameter case requiring filter adaptation.</description><subject>Adaptation</subject><subject>Adaptation models</subject><subject>Adaptive estimation</subject><subject>automotive applications</subject><subject>Automotive components</subject><subject>Automotive wheels</subject><subject>Estimation</subject><subject>Estimators</subject><subject>Excitation</subject><subject>Global Positioning System</subject><subject>Kalman filters</subject><subject>Mathematical models</subject><subject>observability</subject><subject>Tires</subject><subject>Vehicle dynamics</subject><subject>Vehicles</subject><subject>Wheels</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhoMo-PkDxMuCFy-ps7uZ3eRYS6tioQer4mnZbiZ0S5rU7Fbovzel4sHTvAzPOwxPklxzGHAOxf189DofCOA4EFmeY6GPkjOOmKeQKzzuMyiZKpTqNDkPYQXAMxT6LPkclnYT_Tex8cskfbCBSvZOS-9qYq_Rxn4fol_b6NuGffi4ZLOm9g2xYQgUwpqayNqKTVtnazZbBOq-7cLXPu4uk5PK1oGufudF8jYZz0dP6XT2-DwaTlMnhYppCbiwkFelQCc5uFJlC1u53FGFCkuQGWGBDkFrXiFIbivLOYLKBYG2hbxI7g53N137taUQzdoHR3VtG2q3wfBcYFZImWGP3v5DV-22a_rvDNeFKpQGoXuKHyjXtSF0VJlN1xvodoaD2cs2e9lmL9v8yu47N4eOJ6I_XksuigzkD78Kee8</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Katriniok, Alexander</creator><creator>Abel, Dirk</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>201607</creationdate><title>Adaptive EKF-Based Vehicle State Estimation With Online Assessment of Local Observability</title><author>Katriniok, Alexander ; Abel, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-d05ba08fd25c310cd64bafc8cef565d034e595c50771f5031afa1150682e07a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptation</topic><topic>Adaptation models</topic><topic>Adaptive estimation</topic><topic>automotive applications</topic><topic>Automotive components</topic><topic>Automotive wheels</topic><topic>Estimation</topic><topic>Estimators</topic><topic>Excitation</topic><topic>Global Positioning System</topic><topic>Kalman filters</topic><topic>Mathematical models</topic><topic>observability</topic><topic>Tires</topic><topic>Vehicle dynamics</topic><topic>Vehicles</topic><topic>Wheels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katriniok, Alexander</creatorcontrib><creatorcontrib>Abel, Dirk</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Katriniok, Alexander</au><au>Abel, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive EKF-Based Vehicle State Estimation With Online Assessment of Local Observability</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2016-07</date><risdate>2016</risdate><volume>24</volume><issue>4</issue><spage>1368</spage><epage>1381</epage><pages>1368-1381</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>In this paper, an extended Kalman filter-based estimator adopting a dynamic vehicle model for determining the vehicle's longitudinal and lateral velocity as well as the yaw rate is proposed. Two additional adaptation states are introduced to scale longitudinal and lateral tire forces if necessary to account for uncertainties in the tire/road contact. As excitation plays a vital role as far as observability is concerned, the suggested approach assesses local observability online and keeps an unobservable adaptation state constant by introducing the respective state as a virtual measurement variable when losing local observability. Furthermore, the filter is part of a Global Navigation Satellite System (GNSS)-based estimation framework. It exploits the availability of a GNSS-based horizontal velocity estimate instead of wheel speeds as aiding measurement, thus being independent of wheel slip. Experimental results for scenarios with different kinds of excitation show the effectiveness of the proposed estimator in the nominal as well as in the perturbed vehicle parameter case requiring filter adaptation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2015.2488597</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2016-07, Vol.24 (4), p.1368-1381 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_proquest_journals_1796967027 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation Adaptation models Adaptive estimation automotive applications Automotive components Automotive wheels Estimation Estimators Excitation Global Positioning System Kalman filters Mathematical models observability Tires Vehicle dynamics Vehicles Wheels |
title | Adaptive EKF-Based Vehicle State Estimation With Online Assessment of Local Observability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A12%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20EKF-Based%20Vehicle%20State%20Estimation%20With%20Online%20Assessment%20of%20Local%20Observability&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Katriniok,%20Alexander&rft.date=2016-07&rft.volume=24&rft.issue=4&rft.spage=1368&rft.epage=1381&rft.pages=1368-1381&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2015.2488597&rft_dat=%3Cproquest_RIE%3E4089801691%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1796967027&rft_id=info:pmid/&rft_ieee_id=7312940&rfr_iscdi=true |