537. Charge-Reversal Lipids for Gene Transfection

One of the critical steps limiting the efficiency of non-viral gene delivery is the intracellular release of DNA from the vector complex. The complex should be stable enough to prevent DNA degradation but also dissociate from the DNA once inside the cell for subsequent transcription. To facilitate t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular therapy 2006-05, Vol.13 (S1), p.S206-S207
Hauptverfasser: Grinstaff, Mark W., Hernandez Prata, Carla A., Meyers, Steven R., Barthelemy, Philippe, Li, Yougen, Luo, Dan, McIntosh, Tom J., Lee, Stephen J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page S207
container_issue S1
container_start_page S206
container_title Molecular therapy
container_volume 13
creator Grinstaff, Mark W.
Hernandez Prata, Carla A.
Meyers, Steven R.
Barthelemy, Philippe
Li, Yougen
Luo, Dan
McIntosh, Tom J.
Lee, Stephen J.
description One of the critical steps limiting the efficiency of non-viral gene delivery is the intracellular release of DNA from the vector complex. The complex should be stable enough to prevent DNA degradation but also dissociate from the DNA once inside the cell for subsequent transcription. To facilitate the escape of DNA from the DNA-lipid complex in the cell, and thus improve transfection efficiency, we have developed esterase sensitive cationic lipids. These lipids form a strong complex with DNA. Once in the endosome, esterases hydrolyze the terminal ester linkage of the lipid affecting a change in overall lipid charge from cationic to anionic. This charge-reversal transition releases the DNA from the lipids. These charge-reversal lipids (Fig. 1) were synthesized and characterized. The complexation and dissociation of the lipid to the DNA was monitored using an ethidium bromide displacement assay. The supramolecular lipid/DNA complexes were also characterized by dynamic light scattering, TEM and X-ray diffraction. Successful gene transfection was observed with this new class of lipids with CHO, K562, and HEK293 cells.
doi_str_mv 10.1016/j.ymthe.2006.08.608
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1792791690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4073889421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1418-106c537a44fb9be92db46b81f427b96a9c073af8b1649aa8218fa08c930a22493</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhRdRsFZ_gQcDnhNnNpvN7lGKVqEgSD0vk3TXJjRJ3U2E_nvTRnqad3jfG_gYu0dIEFA-1cmh6bc24QAyAZVIUBdshhnPYgAuLs8Z5TW7CaEeE2ZazhhmaZ5Eiy35bxt_2l_rA-2iVbWvNiFynY-WtrXR2lMbnC37qmtv2ZWjXbB3_3fOvl5f1ou3ePWxfF88r-ISBaoYQZbjNgnhCl1YzTeFkIVCJ3heaEm6hDwlpwqUQhMpjsoRqFKnQJwLnc7Z47S7993PYENv6m7w7fjSYK55rlFqGFvp1Cp9F4K3zux91ZA_GARzdGNqc3Jjjm4MKDO6GamHiWqpH7w9M01_bMlcpX8W4mDl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1792791690</pqid></control><display><type>article</type><title>537. Charge-Reversal Lipids for Gene Transfection</title><source>Free E-Journal (出版社公開部分のみ)</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><creator>Grinstaff, Mark W. ; Hernandez Prata, Carla A. ; Meyers, Steven R. ; Barthelemy, Philippe ; Li, Yougen ; Luo, Dan ; McIntosh, Tom J. ; Lee, Stephen J.</creator><creatorcontrib>Grinstaff, Mark W. ; Hernandez Prata, Carla A. ; Meyers, Steven R. ; Barthelemy, Philippe ; Li, Yougen ; Luo, Dan ; McIntosh, Tom J. ; Lee, Stephen J.</creatorcontrib><description>One of the critical steps limiting the efficiency of non-viral gene delivery is the intracellular release of DNA from the vector complex. The complex should be stable enough to prevent DNA degradation but also dissociate from the DNA once inside the cell for subsequent transcription. To facilitate the escape of DNA from the DNA-lipid complex in the cell, and thus improve transfection efficiency, we have developed esterase sensitive cationic lipids. These lipids form a strong complex with DNA. Once in the endosome, esterases hydrolyze the terminal ester linkage of the lipid affecting a change in overall lipid charge from cationic to anionic. This charge-reversal transition releases the DNA from the lipids. These charge-reversal lipids (Fig. 1) were synthesized and characterized. The complexation and dissociation of the lipid to the DNA was monitored using an ethidium bromide displacement assay. The supramolecular lipid/DNA complexes were also characterized by dynamic light scattering, TEM and X-ray diffraction. Successful gene transfection was observed with this new class of lipids with CHO, K562, and HEK293 cells.</description><identifier>ISSN: 1525-0016</identifier><identifier>EISSN: 1525-0024</identifier><identifier>DOI: 10.1016/j.ymthe.2006.08.608</identifier><language>eng</language><publisher>Milwaukee: Elsevier Limited</publisher><subject>Cellulose ; Efficiency ; Engineering ; Environmental engineering ; Lipids ; Microscopy ; Protein expression ; Reagents ; Toxicity ; Vectors (Biology)</subject><ispartof>Molecular therapy, 2006-05, Vol.13 (S1), p.S206-S207</ispartof><rights>Copyright Nature Publishing Group May 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1792791690?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Grinstaff, Mark W.</creatorcontrib><creatorcontrib>Hernandez Prata, Carla A.</creatorcontrib><creatorcontrib>Meyers, Steven R.</creatorcontrib><creatorcontrib>Barthelemy, Philippe</creatorcontrib><creatorcontrib>Li, Yougen</creatorcontrib><creatorcontrib>Luo, Dan</creatorcontrib><creatorcontrib>McIntosh, Tom J.</creatorcontrib><creatorcontrib>Lee, Stephen J.</creatorcontrib><title>537. Charge-Reversal Lipids for Gene Transfection</title><title>Molecular therapy</title><description>One of the critical steps limiting the efficiency of non-viral gene delivery is the intracellular release of DNA from the vector complex. The complex should be stable enough to prevent DNA degradation but also dissociate from the DNA once inside the cell for subsequent transcription. To facilitate the escape of DNA from the DNA-lipid complex in the cell, and thus improve transfection efficiency, we have developed esterase sensitive cationic lipids. These lipids form a strong complex with DNA. Once in the endosome, esterases hydrolyze the terminal ester linkage of the lipid affecting a change in overall lipid charge from cationic to anionic. This charge-reversal transition releases the DNA from the lipids. These charge-reversal lipids (Fig. 1) were synthesized and characterized. The complexation and dissociation of the lipid to the DNA was monitored using an ethidium bromide displacement assay. The supramolecular lipid/DNA complexes were also characterized by dynamic light scattering, TEM and X-ray diffraction. Successful gene transfection was observed with this new class of lipids with CHO, K562, and HEK293 cells.</description><subject>Cellulose</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Environmental engineering</subject><subject>Lipids</subject><subject>Microscopy</subject><subject>Protein expression</subject><subject>Reagents</subject><subject>Toxicity</subject><subject>Vectors (Biology)</subject><issn>1525-0016</issn><issn>1525-0024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNo9kEFLw0AQhRdRsFZ_gQcDnhNnNpvN7lGKVqEgSD0vk3TXJjRJ3U2E_nvTRnqad3jfG_gYu0dIEFA-1cmh6bc24QAyAZVIUBdshhnPYgAuLs8Z5TW7CaEeE2ZazhhmaZ5Eiy35bxt_2l_rA-2iVbWvNiFynY-WtrXR2lMbnC37qmtv2ZWjXbB3_3fOvl5f1ou3ePWxfF88r-ISBaoYQZbjNgnhCl1YzTeFkIVCJ3heaEm6hDwlpwqUQhMpjsoRqFKnQJwLnc7Z47S7993PYENv6m7w7fjSYK55rlFqGFvp1Cp9F4K3zux91ZA_GARzdGNqc3Jjjm4MKDO6GamHiWqpH7w9M01_bMlcpX8W4mDl</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Grinstaff, Mark W.</creator><creator>Hernandez Prata, Carla A.</creator><creator>Meyers, Steven R.</creator><creator>Barthelemy, Philippe</creator><creator>Li, Yougen</creator><creator>Luo, Dan</creator><creator>McIntosh, Tom J.</creator><creator>Lee, Stephen J.</creator><general>Elsevier Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20060501</creationdate><title>537. Charge-Reversal Lipids for Gene Transfection</title><author>Grinstaff, Mark W. ; Hernandez Prata, Carla A. ; Meyers, Steven R. ; Barthelemy, Philippe ; Li, Yougen ; Luo, Dan ; McIntosh, Tom J. ; Lee, Stephen J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1418-106c537a44fb9be92db46b81f427b96a9c073af8b1649aa8218fa08c930a22493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Cellulose</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Environmental engineering</topic><topic>Lipids</topic><topic>Microscopy</topic><topic>Protein expression</topic><topic>Reagents</topic><topic>Toxicity</topic><topic>Vectors (Biology)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grinstaff, Mark W.</creatorcontrib><creatorcontrib>Hernandez Prata, Carla A.</creatorcontrib><creatorcontrib>Meyers, Steven R.</creatorcontrib><creatorcontrib>Barthelemy, Philippe</creatorcontrib><creatorcontrib>Li, Yougen</creatorcontrib><creatorcontrib>Luo, Dan</creatorcontrib><creatorcontrib>McIntosh, Tom J.</creatorcontrib><creatorcontrib>Lee, Stephen J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Molecular therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grinstaff, Mark W.</au><au>Hernandez Prata, Carla A.</au><au>Meyers, Steven R.</au><au>Barthelemy, Philippe</au><au>Li, Yougen</au><au>Luo, Dan</au><au>McIntosh, Tom J.</au><au>Lee, Stephen J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>537. Charge-Reversal Lipids for Gene Transfection</atitle><jtitle>Molecular therapy</jtitle><date>2006-05-01</date><risdate>2006</risdate><volume>13</volume><issue>S1</issue><spage>S206</spage><epage>S207</epage><pages>S206-S207</pages><issn>1525-0016</issn><eissn>1525-0024</eissn><abstract>One of the critical steps limiting the efficiency of non-viral gene delivery is the intracellular release of DNA from the vector complex. The complex should be stable enough to prevent DNA degradation but also dissociate from the DNA once inside the cell for subsequent transcription. To facilitate the escape of DNA from the DNA-lipid complex in the cell, and thus improve transfection efficiency, we have developed esterase sensitive cationic lipids. These lipids form a strong complex with DNA. Once in the endosome, esterases hydrolyze the terminal ester linkage of the lipid affecting a change in overall lipid charge from cationic to anionic. This charge-reversal transition releases the DNA from the lipids. These charge-reversal lipids (Fig. 1) were synthesized and characterized. The complexation and dissociation of the lipid to the DNA was monitored using an ethidium bromide displacement assay. The supramolecular lipid/DNA complexes were also characterized by dynamic light scattering, TEM and X-ray diffraction. Successful gene transfection was observed with this new class of lipids with CHO, K562, and HEK293 cells.</abstract><cop>Milwaukee</cop><pub>Elsevier Limited</pub><doi>10.1016/j.ymthe.2006.08.608</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-0016
ispartof Molecular therapy, 2006-05, Vol.13 (S1), p.S206-S207
issn 1525-0016
1525-0024
language eng
recordid cdi_proquest_journals_1792791690
source Free E-Journal (出版社公開部分のみ); ProQuest Central UK/Ireland; Alma/SFX Local Collection
subjects Cellulose
Efficiency
Engineering
Environmental engineering
Lipids
Microscopy
Protein expression
Reagents
Toxicity
Vectors (Biology)
title 537. Charge-Reversal Lipids for Gene Transfection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A04%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=537.%20Charge-Reversal%20Lipids%20for%20Gene%20Transfection&rft.jtitle=Molecular%20therapy&rft.au=Grinstaff,%20Mark%20W.&rft.date=2006-05-01&rft.volume=13&rft.issue=S1&rft.spage=S206&rft.epage=S207&rft.pages=S206-S207&rft.issn=1525-0016&rft.eissn=1525-0024&rft_id=info:doi/10.1016/j.ymthe.2006.08.608&rft_dat=%3Cproquest_cross%3E4073889421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1792791690&rft_id=info:pmid/&rfr_iscdi=true