Sparse and Low-Rank Graph for Discriminant Analysis of Hyperspectral Imagery

Recently, sparse graph-based discriminant analysis (SGDA) has been developed for the dimensionality reduction and classification of hyperspectral imagery. In SGDA, a graph is constructed by ℓ 1 -norm optimization based on available labeled samples. Different from traditional methods (e.g., k-nearest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2016-07, Vol.54 (7), p.4094-4105
Hauptverfasser: Li, Wei, Liu, Jiabin, Du, Qian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4105
container_issue 7
container_start_page 4094
container_title IEEE transactions on geoscience and remote sensing
container_volume 54
creator Li, Wei
Liu, Jiabin
Du, Qian
description Recently, sparse graph-based discriminant analysis (SGDA) has been developed for the dimensionality reduction and classification of hyperspectral imagery. In SGDA, a graph is constructed by ℓ 1 -norm optimization based on available labeled samples. Different from traditional methods (e.g., k-nearest neighbor with Euclidean distance), weights in an ℓ 1 -graph derived via a sparse representation can automatically select more discriminative neighbors in the feature space. However, the sparsity-based graph represents each sample individually, lacking a global constraint on each specific solution. As a consequence, SGDA may be ineffective in capturing the global structures of data. To overcome this drawback, a sparse and low-rank graph-based discriminant analysis (SLGDA) is proposed. Low-rank representation has been proved to be capable of preserving global data structures, although it may result in a dense graph. In SLGDA, a more informative graph is constructed by combining both sparsity and low rankness to maintain global and local structures simultaneously. Experimental results on several different multiple-class hyperspectral-classification tasks demonstrate that the proposed SLGDA significantly outperforms the state-of-the-art SGDA.
doi_str_mv 10.1109/TGRS.2016.2536685
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1792641030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7438832</ieee_id><sourcerecordid>4073224741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-6f408f83aff57fd1f2258fbd01d95ee8d1d1968a95c83a351a149ae552474b83</originalsourceid><addsrcrecordid>eNqNkT1PwzAQhi0EEqXwAxCLJRaWFJ8_EnusCrRIkZDa7pab2JCSJsFOhfLvcdWKgYnpluc9vXcPQrdAJgBEPa7ny9WEEkgnVLA0leIMjUAImZCU83M0IqDShEpFL9FVCFtCgAvIRihfdcYHi01T4rz9Tpam-cRzb7oP7FqPn6pQ-GpXNabp8bQx9RCqgFuHF0Nnfehs0XtT49edebd-uEYXztTB3pzmGK1fntezRZK_zV9n0zwpmFB9kjpOpJPMOCcyV4KjVEi3KQmUSlgrSyhjW2mUKCLEBBjgylghKM_4RrIxejiu7Xz7tbeh17tY09a1aWy7DxokFVxlTP4HJTJVDIiI6P0fdNvufTw5UpmiKQfCSKTgSBW-DcFbp7v4H-MHDUQfTOiDCX0woU8mYubumKmstb98xg8FKfsB-MaDBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1792641030</pqid></control><display><type>article</type><title>Sparse and Low-Rank Graph for Discriminant Analysis of Hyperspectral Imagery</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Wei ; Liu, Jiabin ; Du, Qian</creator><creatorcontrib>Li, Wei ; Liu, Jiabin ; Du, Qian</creatorcontrib><description>Recently, sparse graph-based discriminant analysis (SGDA) has been developed for the dimensionality reduction and classification of hyperspectral imagery. In SGDA, a graph is constructed by ℓ 1 -norm optimization based on available labeled samples. Different from traditional methods (e.g., k-nearest neighbor with Euclidean distance), weights in an ℓ 1 -graph derived via a sparse representation can automatically select more discriminative neighbors in the feature space. However, the sparsity-based graph represents each sample individually, lacking a global constraint on each specific solution. As a consequence, SGDA may be ineffective in capturing the global structures of data. To overcome this drawback, a sparse and low-rank graph-based discriminant analysis (SLGDA) is proposed. Low-rank representation has been proved to be capable of preserving global data structures, although it may result in a dense graph. In SLGDA, a more informative graph is constructed by combining both sparsity and low rankness to maintain global and local structures simultaneously. Experimental results on several different multiple-class hyperspectral-classification tasks demonstrate that the proposed SLGDA significantly outperforms the state-of-the-art SGDA.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2016.2536685</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Classification ; Construction ; Dictionaries ; Dimensionality reduction ; Discriminant analysis ; Eigenvalues and eigenfunctions ; Euclidean geometry ; graph embedding ; Graphs ; hyperspectral data ; Hyperspectral imaging ; Image classification ; Kernel ; low-rank graph ; Optimization ; Principal component analysis ; sparse graph ; Sparse matrices ; Sparsity ; Tasks</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2016-07, Vol.54 (7), p.4094-4105</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-6f408f83aff57fd1f2258fbd01d95ee8d1d1968a95c83a351a149ae552474b83</citedby><cites>FETCH-LOGICAL-c359t-6f408f83aff57fd1f2258fbd01d95ee8d1d1968a95c83a351a149ae552474b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7438832$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7438832$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Liu, Jiabin</creatorcontrib><creatorcontrib>Du, Qian</creatorcontrib><title>Sparse and Low-Rank Graph for Discriminant Analysis of Hyperspectral Imagery</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Recently, sparse graph-based discriminant analysis (SGDA) has been developed for the dimensionality reduction and classification of hyperspectral imagery. In SGDA, a graph is constructed by ℓ 1 -norm optimization based on available labeled samples. Different from traditional methods (e.g., k-nearest neighbor with Euclidean distance), weights in an ℓ 1 -graph derived via a sparse representation can automatically select more discriminative neighbors in the feature space. However, the sparsity-based graph represents each sample individually, lacking a global constraint on each specific solution. As a consequence, SGDA may be ineffective in capturing the global structures of data. To overcome this drawback, a sparse and low-rank graph-based discriminant analysis (SLGDA) is proposed. Low-rank representation has been proved to be capable of preserving global data structures, although it may result in a dense graph. In SLGDA, a more informative graph is constructed by combining both sparsity and low rankness to maintain global and local structures simultaneously. Experimental results on several different multiple-class hyperspectral-classification tasks demonstrate that the proposed SLGDA significantly outperforms the state-of-the-art SGDA.</description><subject>Classification</subject><subject>Construction</subject><subject>Dictionaries</subject><subject>Dimensionality reduction</subject><subject>Discriminant analysis</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Euclidean geometry</subject><subject>graph embedding</subject><subject>Graphs</subject><subject>hyperspectral data</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>Kernel</subject><subject>low-rank graph</subject><subject>Optimization</subject><subject>Principal component analysis</subject><subject>sparse graph</subject><subject>Sparse matrices</subject><subject>Sparsity</subject><subject>Tasks</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkT1PwzAQhi0EEqXwAxCLJRaWFJ8_EnusCrRIkZDa7pab2JCSJsFOhfLvcdWKgYnpluc9vXcPQrdAJgBEPa7ny9WEEkgnVLA0leIMjUAImZCU83M0IqDShEpFL9FVCFtCgAvIRihfdcYHi01T4rz9Tpam-cRzb7oP7FqPn6pQ-GpXNabp8bQx9RCqgFuHF0Nnfehs0XtT49edebd-uEYXztTB3pzmGK1fntezRZK_zV9n0zwpmFB9kjpOpJPMOCcyV4KjVEi3KQmUSlgrSyhjW2mUKCLEBBjgylghKM_4RrIxejiu7Xz7tbeh17tY09a1aWy7DxokFVxlTP4HJTJVDIiI6P0fdNvufTw5UpmiKQfCSKTgSBW-DcFbp7v4H-MHDUQfTOiDCX0woU8mYubumKmstb98xg8FKfsB-MaDBQ</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Li, Wei</creator><creator>Liu, Jiabin</creator><creator>Du, Qian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>201607</creationdate><title>Sparse and Low-Rank Graph for Discriminant Analysis of Hyperspectral Imagery</title><author>Li, Wei ; Liu, Jiabin ; Du, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-6f408f83aff57fd1f2258fbd01d95ee8d1d1968a95c83a351a149ae552474b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Classification</topic><topic>Construction</topic><topic>Dictionaries</topic><topic>Dimensionality reduction</topic><topic>Discriminant analysis</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Euclidean geometry</topic><topic>graph embedding</topic><topic>Graphs</topic><topic>hyperspectral data</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>Kernel</topic><topic>low-rank graph</topic><topic>Optimization</topic><topic>Principal component analysis</topic><topic>sparse graph</topic><topic>Sparse matrices</topic><topic>Sparsity</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Liu, Jiabin</creatorcontrib><creatorcontrib>Du, Qian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Wei</au><au>Liu, Jiabin</au><au>Du, Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse and Low-Rank Graph for Discriminant Analysis of Hyperspectral Imagery</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2016-07</date><risdate>2016</risdate><volume>54</volume><issue>7</issue><spage>4094</spage><epage>4105</epage><pages>4094-4105</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Recently, sparse graph-based discriminant analysis (SGDA) has been developed for the dimensionality reduction and classification of hyperspectral imagery. In SGDA, a graph is constructed by ℓ 1 -norm optimization based on available labeled samples. Different from traditional methods (e.g., k-nearest neighbor with Euclidean distance), weights in an ℓ 1 -graph derived via a sparse representation can automatically select more discriminative neighbors in the feature space. However, the sparsity-based graph represents each sample individually, lacking a global constraint on each specific solution. As a consequence, SGDA may be ineffective in capturing the global structures of data. To overcome this drawback, a sparse and low-rank graph-based discriminant analysis (SLGDA) is proposed. Low-rank representation has been proved to be capable of preserving global data structures, although it may result in a dense graph. In SLGDA, a more informative graph is constructed by combining both sparsity and low rankness to maintain global and local structures simultaneously. Experimental results on several different multiple-class hyperspectral-classification tasks demonstrate that the proposed SLGDA significantly outperforms the state-of-the-art SGDA.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2016.2536685</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2016-07, Vol.54 (7), p.4094-4105
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_1792641030
source IEEE Electronic Library (IEL)
subjects Classification
Construction
Dictionaries
Dimensionality reduction
Discriminant analysis
Eigenvalues and eigenfunctions
Euclidean geometry
graph embedding
Graphs
hyperspectral data
Hyperspectral imaging
Image classification
Kernel
low-rank graph
Optimization
Principal component analysis
sparse graph
Sparse matrices
Sparsity
Tasks
title Sparse and Low-Rank Graph for Discriminant Analysis of Hyperspectral Imagery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T22%3A50%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20and%20Low-Rank%20Graph%20for%20Discriminant%20Analysis%20of%20Hyperspectral%20Imagery&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Li,%20Wei&rft.date=2016-07&rft.volume=54&rft.issue=7&rft.spage=4094&rft.epage=4105&rft.pages=4094-4105&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2016.2536685&rft_dat=%3Cproquest_RIE%3E4073224741%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1792641030&rft_id=info:pmid/&rft_ieee_id=7438832&rfr_iscdi=true