Numerical Simulation of Transit-Time Ultrasonic Flowmeters by a Direct Approach
This paper deals with the development of a computational code for the numerical simulation of wave propagation through domains with a complex geometry consisting in both solids and moving fluids. The emphasis is on the numerical simulation of ultrasonic flowmeters (UFMs) by modeling the wave propaga...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2016-06, Vol.63 (6), p.886-897 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 897 |
---|---|
container_issue | 6 |
container_start_page | 886 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 63 |
creator | Luca, Adrian Marchiano, Regis Chassaing, Jean-Camille |
description | This paper deals with the development of a computational code for the numerical simulation of wave propagation through domains with a complex geometry consisting in both solids and moving fluids. The emphasis is on the numerical simulation of ultrasonic flowmeters (UFMs) by modeling the wave propagation in solids with the equations of linear elasticity (ELE) and in fluids with the linearized Euler equations (LEEs). This approach requires high performance computing because of the high number of degrees of freedom and the long propagation distances. Therefore, the numerical method should be chosen with care. In order to minimize the numerical dissipation which may occur in this kind of configuration, the numerical method employed here is the nodal discontinuous Galerkin (DG) method. Also, this method is well suited for parallel computing. To speed up the code, almost all the computational stages have been implemented to run on graphical processing unit (GPU) by using the compute unified device architecture (CUDA) programming model from NVIDIA. This approach has been validated and then used for the two-dimensional simulation of gas UFMs. The large contrast of acoustic impedance characteristic to gas UFMs makes their simulation a real challenge. |
doi_str_mv | 10.1109/TUFFC.2016.2545714 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1792640969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7439838</ieee_id><sourcerecordid>4073221191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-5a12780e4e7914786f350571c7ba965c236e49ac117a81c8d9894448cbbb89533</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhi1UREPhD1CpstQLHDZ4_LG2j1EgFCmiB5Kz5XUd1dXuOrV3W-Xf4yUhB04jeZ4ZzesHoU9A5gBEf91sV6vlnBKo51RwIYG_QTMQVFRKC3GBZkQpUTEC5BK9z_mJEOBc03fokkoCmis-Q_e_xs6n4GyLf4dubO0QYo_jDm-S7XMYqk3oPN62Q7I59sHhVRtfOz_4lHFzwBZ_C8m7AS_2-xSte_yA3u5sm_3HU71C29X3zfKuWt__-LlcrCvHlBgqYYFKRTz3UgOXqt4xQUoCJxura-Eoqz3X1gFIq8CpB60051y5pmlKOMau0Jfj3kfbmn0KnU0HE20wd4u1md5KVqG15i9Q2M9Htpz4PPo8mC5k59vW9j6O2YDUTEw_Igt6-x_6FMfUlyQTRWtOdK0LRY-USzHn5HfnC4CYSY35q8ZMasxJTRm6Oa0em84_nEf-uSjA9REI3vtzW3KmFVPsD9mCj48</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1792640969</pqid></control><display><type>article</type><title>Numerical Simulation of Transit-Time Ultrasonic Flowmeters by a Direct Approach</title><source>IEEE Electronic Library Online</source><creator>Luca, Adrian ; Marchiano, Regis ; Chassaing, Jean-Camille</creator><creatorcontrib>Luca, Adrian ; Marchiano, Regis ; Chassaing, Jean-Camille</creatorcontrib><description>This paper deals with the development of a computational code for the numerical simulation of wave propagation through domains with a complex geometry consisting in both solids and moving fluids. The emphasis is on the numerical simulation of ultrasonic flowmeters (UFMs) by modeling the wave propagation in solids with the equations of linear elasticity (ELE) and in fluids with the linearized Euler equations (LEEs). This approach requires high performance computing because of the high number of degrees of freedom and the long propagation distances. Therefore, the numerical method should be chosen with care. In order to minimize the numerical dissipation which may occur in this kind of configuration, the numerical method employed here is the nodal discontinuous Galerkin (DG) method. Also, this method is well suited for parallel computing. To speed up the code, almost all the computational stages have been implemented to run on graphical processing unit (GPU) by using the compute unified device architecture (CUDA) programming model from NVIDIA. This approach has been validated and then used for the two-dimensional simulation of gas UFMs. The large contrast of acoustic impedance characteristic to gas UFMs makes their simulation a real challenge.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2016.2545714</identifier><identifier>PMID: 27019484</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acoustics ; Biomechanics ; Computational modeling ; Computer Simulation ; discontinuous Galerkin methods ; Euler equations ; GPU computing ; Image Processing, Computer-Assisted ; linear elasticity ; Mathematical model ; Mechanics ; Numerical analysis ; Numerical simulation ; Physics ; Propagation ; Rheology - methods ; Simulation ; Solids ; Transducers ; transit-time flowmeters ; Ultrasonics - methods</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2016-06, Vol.63 (6), p.886-897</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-5a12780e4e7914786f350571c7ba965c236e49ac117a81c8d9894448cbbb89533</citedby><cites>FETCH-LOGICAL-c385t-5a12780e4e7914786f350571c7ba965c236e49ac117a81c8d9894448cbbb89533</cites><orcidid>0000-0002-6221-2303 ; 0000-0001-9716-8034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7439838$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7439838$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27019484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01459994$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Luca, Adrian</creatorcontrib><creatorcontrib>Marchiano, Regis</creatorcontrib><creatorcontrib>Chassaing, Jean-Camille</creatorcontrib><title>Numerical Simulation of Transit-Time Ultrasonic Flowmeters by a Direct Approach</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>This paper deals with the development of a computational code for the numerical simulation of wave propagation through domains with a complex geometry consisting in both solids and moving fluids. The emphasis is on the numerical simulation of ultrasonic flowmeters (UFMs) by modeling the wave propagation in solids with the equations of linear elasticity (ELE) and in fluids with the linearized Euler equations (LEEs). This approach requires high performance computing because of the high number of degrees of freedom and the long propagation distances. Therefore, the numerical method should be chosen with care. In order to minimize the numerical dissipation which may occur in this kind of configuration, the numerical method employed here is the nodal discontinuous Galerkin (DG) method. Also, this method is well suited for parallel computing. To speed up the code, almost all the computational stages have been implemented to run on graphical processing unit (GPU) by using the compute unified device architecture (CUDA) programming model from NVIDIA. This approach has been validated and then used for the two-dimensional simulation of gas UFMs. The large contrast of acoustic impedance characteristic to gas UFMs makes their simulation a real challenge.</description><subject>Acoustics</subject><subject>Biomechanics</subject><subject>Computational modeling</subject><subject>Computer Simulation</subject><subject>discontinuous Galerkin methods</subject><subject>Euler equations</subject><subject>GPU computing</subject><subject>Image Processing, Computer-Assisted</subject><subject>linear elasticity</subject><subject>Mathematical model</subject><subject>Mechanics</subject><subject>Numerical analysis</subject><subject>Numerical simulation</subject><subject>Physics</subject><subject>Propagation</subject><subject>Rheology - methods</subject><subject>Simulation</subject><subject>Solids</subject><subject>Transducers</subject><subject>transit-time flowmeters</subject><subject>Ultrasonics - methods</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU1vEzEQhi1UREPhD1CpstQLHDZ4_LG2j1EgFCmiB5Kz5XUd1dXuOrV3W-Xf4yUhB04jeZ4ZzesHoU9A5gBEf91sV6vlnBKo51RwIYG_QTMQVFRKC3GBZkQpUTEC5BK9z_mJEOBc03fokkoCmis-Q_e_xs6n4GyLf4dubO0QYo_jDm-S7XMYqk3oPN62Q7I59sHhVRtfOz_4lHFzwBZ_C8m7AS_2-xSte_yA3u5sm_3HU71C29X3zfKuWt__-LlcrCvHlBgqYYFKRTz3UgOXqt4xQUoCJxura-Eoqz3X1gFIq8CpB60051y5pmlKOMau0Jfj3kfbmn0KnU0HE20wd4u1md5KVqG15i9Q2M9Htpz4PPo8mC5k59vW9j6O2YDUTEw_Igt6-x_6FMfUlyQTRWtOdK0LRY-USzHn5HfnC4CYSY35q8ZMasxJTRm6Oa0em84_nEf-uSjA9REI3vtzW3KmFVPsD9mCj48</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Luca, Adrian</creator><creator>Marchiano, Regis</creator><creator>Chassaing, Jean-Camille</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6221-2303</orcidid><orcidid>https://orcid.org/0000-0001-9716-8034</orcidid></search><sort><creationdate>201606</creationdate><title>Numerical Simulation of Transit-Time Ultrasonic Flowmeters by a Direct Approach</title><author>Luca, Adrian ; Marchiano, Regis ; Chassaing, Jean-Camille</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-5a12780e4e7914786f350571c7ba965c236e49ac117a81c8d9894448cbbb89533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acoustics</topic><topic>Biomechanics</topic><topic>Computational modeling</topic><topic>Computer Simulation</topic><topic>discontinuous Galerkin methods</topic><topic>Euler equations</topic><topic>GPU computing</topic><topic>Image Processing, Computer-Assisted</topic><topic>linear elasticity</topic><topic>Mathematical model</topic><topic>Mechanics</topic><topic>Numerical analysis</topic><topic>Numerical simulation</topic><topic>Physics</topic><topic>Propagation</topic><topic>Rheology - methods</topic><topic>Simulation</topic><topic>Solids</topic><topic>Transducers</topic><topic>transit-time flowmeters</topic><topic>Ultrasonics - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luca, Adrian</creatorcontrib><creatorcontrib>Marchiano, Regis</creatorcontrib><creatorcontrib>Chassaing, Jean-Camille</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Luca, Adrian</au><au>Marchiano, Regis</au><au>Chassaing, Jean-Camille</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of Transit-Time Ultrasonic Flowmeters by a Direct Approach</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2016-06</date><risdate>2016</risdate><volume>63</volume><issue>6</issue><spage>886</spage><epage>897</epage><pages>886-897</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>This paper deals with the development of a computational code for the numerical simulation of wave propagation through domains with a complex geometry consisting in both solids and moving fluids. The emphasis is on the numerical simulation of ultrasonic flowmeters (UFMs) by modeling the wave propagation in solids with the equations of linear elasticity (ELE) and in fluids with the linearized Euler equations (LEEs). This approach requires high performance computing because of the high number of degrees of freedom and the long propagation distances. Therefore, the numerical method should be chosen with care. In order to minimize the numerical dissipation which may occur in this kind of configuration, the numerical method employed here is the nodal discontinuous Galerkin (DG) method. Also, this method is well suited for parallel computing. To speed up the code, almost all the computational stages have been implemented to run on graphical processing unit (GPU) by using the compute unified device architecture (CUDA) programming model from NVIDIA. This approach has been validated and then used for the two-dimensional simulation of gas UFMs. The large contrast of acoustic impedance characteristic to gas UFMs makes their simulation a real challenge.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27019484</pmid><doi>10.1109/TUFFC.2016.2545714</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6221-2303</orcidid><orcidid>https://orcid.org/0000-0001-9716-8034</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2016-06, Vol.63 (6), p.886-897 |
issn | 0885-3010 1525-8955 |
language | eng |
recordid | cdi_proquest_journals_1792640969 |
source | IEEE Electronic Library Online |
subjects | Acoustics Biomechanics Computational modeling Computer Simulation discontinuous Galerkin methods Euler equations GPU computing Image Processing, Computer-Assisted linear elasticity Mathematical model Mechanics Numerical analysis Numerical simulation Physics Propagation Rheology - methods Simulation Solids Transducers transit-time flowmeters Ultrasonics - methods |
title | Numerical Simulation of Transit-Time Ultrasonic Flowmeters by a Direct Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A44%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20Transit-Time%20Ultrasonic%20Flowmeters%20by%20a%20Direct%20Approach&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Luca,%20Adrian&rft.date=2016-06&rft.volume=63&rft.issue=6&rft.spage=886&rft.epage=897&rft.pages=886-897&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2016.2545714&rft_dat=%3Cproquest_RIE%3E4073221191%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1792640969&rft_id=info:pmid/27019484&rft_ieee_id=7439838&rfr_iscdi=true |