TORSION POINTS AND THE LATTÈS FAMILY
We give a dynamical proof of a result of Masser and Zannier: for any $a \neq b \in \overline{\mathbb{Q}} \setminus \left \{ 0, 1 \right \}$, there are only finitely many parameters t ∈ ℂ for which points $P_{a} = (a, \sqrt{a(a-1)(a-t)})$ and $P_{b} = (b, \sqrt{b(b-1)(b-t)})$ are both torsion on the...
Gespeichert in:
Veröffentlicht in: | American journal of mathematics 2016-06, Vol.138 (3), p.697-732 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 732 |
---|---|
container_issue | 3 |
container_start_page | 697 |
container_title | American journal of mathematics |
container_volume | 138 |
creator | DeMarco, Laura Wang, Xiaoguang Ye, Hexi |
description | We give a dynamical proof of a result of Masser and Zannier: for any $a \neq b \in \overline{\mathbb{Q}} \setminus \left \{ 0, 1 \right \}$, there are only finitely many parameters t ∈ ℂ for which points $P_{a} = (a, \sqrt{a(a-1)(a-t)})$ and $P_{b} = (b, \sqrt{b(b-1)(b-t)})$ are both torsion on the Legendre elliptic curve Et = {y2 = x(x − 1)(x − t)}. Our method also gives the finiteness of parameters t where both Pa and Pb have small Néron-Tate height. A key ingredient in the proof is an arithmetic equidistribution theorem on ℙ1. For this, we prove two statements about the degree-4 Lattès family ft on ℙ1: (1) for each c ∈ ℂ(t), the bifurcation measure μc for the pair (ft,c) has continuous potential across the singular parameters t = 0,1,∞; and (2) for distinct points a,b ∈ ℂ \ {0,1}, the bifurcation measures μa and μb cannot coincide. Combining our methods with the result of Masser and Zannier, we extend their conclusion to points t of small height also for a,b ∈ ℂ(t). |
doi_str_mv | 10.1353/ajm.2016.0026 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1792588056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24736406</jstor_id><sourcerecordid>24736406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-2d6811ec824cfe59a009a30aaa0929b89e7e1fa057db40e33ea4ed6b02cfe80e3</originalsourceid><addsrcrecordid>eNpFkMtKw0AUhgdRsFaXLoWAuEw9c8lclqG2NhAbMRF0NUzTCRisqTPpwjfwvXwxJ1Tq6nAO3_8f-BC6xDDBNKG3pt1MCGA-ASD8CI0wSIg5FeIYjSDcYkWJOEVn3rdhBQFkhG6q4qnMimX0WGTLqozS5V1ULWZRnlbVz3cZzdOHLH89RyeNeff24m-O0fN8Vk0XcV7cZ9M0j2tKSR-TNZcY21oSVjc2UQZAGQrGGFBEraSywuLGQCLWKwaWUmuYXfMVkIDLcBij633v1nWfO-t73XY79xFeaiwUSaSEhAcq3lO167x3ttFb97Yx7ktj0IMJHUzowYQeTASeHVpbW_ebnbf_xRwrBqDLwdYgC3Ma5NCXELvax1rfd-7wgzBBOQvoL8SYZqI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1792588056</pqid></control><display><type>article</type><title>TORSION POINTS AND THE LATTÈS FAMILY</title><source>Jstor Complete Legacy</source><source>Project Muse</source><source>JSTOR Mathematics & Statistics</source><creator>DeMarco, Laura ; Wang, Xiaoguang ; Ye, Hexi</creator><creatorcontrib>DeMarco, Laura ; Wang, Xiaoguang ; Ye, Hexi</creatorcontrib><description>We give a dynamical proof of a result of Masser and Zannier: for any $a \neq b \in \overline{\mathbb{Q}} \setminus \left \{ 0, 1 \right \}$, there are only finitely many parameters t ∈ ℂ for which points $P_{a} = (a, \sqrt{a(a-1)(a-t)})$ and $P_{b} = (b, \sqrt{b(b-1)(b-t)})$ are both torsion on the Legendre elliptic curve Et = {y2 = x(x − 1)(x − t)}. Our method also gives the finiteness of parameters t where both Pa and Pb have small Néron-Tate height. A key ingredient in the proof is an arithmetic equidistribution theorem on ℙ1. For this, we prove two statements about the degree-4 Lattès family ft on ℙ1: (1) for each c ∈ ℂ(t), the bifurcation measure μc for the pair (ft,c) has continuous potential across the singular parameters t = 0,1,∞; and (2) for distinct points a,b ∈ ℂ \ {0,1}, the bifurcation measures μa and μb cannot coincide. Combining our methods with the result of Masser and Zannier, we extend their conclusion to points t of small height also for a,b ∈ ℂ(t).</description><identifier>ISSN: 0002-9327</identifier><identifier>ISSN: 1080-6377</identifier><identifier>EISSN: 1080-6377</identifier><identifier>DOI: 10.1353/ajm.2016.0026</identifier><language>eng</language><publisher>Baltimore: Johns Hopkins University Press</publisher><subject>Mathematical functions ; Mathematical problems</subject><ispartof>American journal of mathematics, 2016-06, Vol.138 (3), p.697-732</ispartof><rights>Copyright © 2016 Johns Hopkins University Press</rights><rights>Copyright © The Johns Hopkins University Press.</rights><rights>Copyright Johns Hopkins University Press Jun 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-2d6811ec824cfe59a009a30aaa0929b89e7e1fa057db40e33ea4ed6b02cfe80e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24736406$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24736406$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,21106,27901,27902,56817,57377,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>DeMarco, Laura</creatorcontrib><creatorcontrib>Wang, Xiaoguang</creatorcontrib><creatorcontrib>Ye, Hexi</creatorcontrib><title>TORSION POINTS AND THE LATTÈS FAMILY</title><title>American journal of mathematics</title><description>We give a dynamical proof of a result of Masser and Zannier: for any $a \neq b \in \overline{\mathbb{Q}} \setminus \left \{ 0, 1 \right \}$, there are only finitely many parameters t ∈ ℂ for which points $P_{a} = (a, \sqrt{a(a-1)(a-t)})$ and $P_{b} = (b, \sqrt{b(b-1)(b-t)})$ are both torsion on the Legendre elliptic curve Et = {y2 = x(x − 1)(x − t)}. Our method also gives the finiteness of parameters t where both Pa and Pb have small Néron-Tate height. A key ingredient in the proof is an arithmetic equidistribution theorem on ℙ1. For this, we prove two statements about the degree-4 Lattès family ft on ℙ1: (1) for each c ∈ ℂ(t), the bifurcation measure μc for the pair (ft,c) has continuous potential across the singular parameters t = 0,1,∞; and (2) for distinct points a,b ∈ ℂ \ {0,1}, the bifurcation measures μa and μb cannot coincide. Combining our methods with the result of Masser and Zannier, we extend their conclusion to points t of small height also for a,b ∈ ℂ(t).</description><subject>Mathematical functions</subject><subject>Mathematical problems</subject><issn>0002-9327</issn><issn>1080-6377</issn><issn>1080-6377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkMtKw0AUhgdRsFaXLoWAuEw9c8lclqG2NhAbMRF0NUzTCRisqTPpwjfwvXwxJ1Tq6nAO3_8f-BC6xDDBNKG3pt1MCGA-ASD8CI0wSIg5FeIYjSDcYkWJOEVn3rdhBQFkhG6q4qnMimX0WGTLqozS5V1ULWZRnlbVz3cZzdOHLH89RyeNeff24m-O0fN8Vk0XcV7cZ9M0j2tKSR-TNZcY21oSVjc2UQZAGQrGGFBEraSywuLGQCLWKwaWUmuYXfMVkIDLcBij633v1nWfO-t73XY79xFeaiwUSaSEhAcq3lO167x3ttFb97Yx7ktj0IMJHUzowYQeTASeHVpbW_ebnbf_xRwrBqDLwdYgC3Ma5NCXELvax1rfd-7wgzBBOQvoL8SYZqI</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>DeMarco, Laura</creator><creator>Wang, Xiaoguang</creator><creator>Ye, Hexi</creator><general>Johns Hopkins University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7XB</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20160601</creationdate><title>TORSION POINTS AND THE LATTÈS FAMILY</title><author>DeMarco, Laura ; Wang, Xiaoguang ; Ye, Hexi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-2d6811ec824cfe59a009a30aaa0929b89e7e1fa057db40e33ea4ed6b02cfe80e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Mathematical functions</topic><topic>Mathematical problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DeMarco, Laura</creatorcontrib><creatorcontrib>Wang, Xiaoguang</creatorcontrib><creatorcontrib>Ye, Hexi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>American journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DeMarco, Laura</au><au>Wang, Xiaoguang</au><au>Ye, Hexi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TORSION POINTS AND THE LATTÈS FAMILY</atitle><jtitle>American journal of mathematics</jtitle><date>2016-06-01</date><risdate>2016</risdate><volume>138</volume><issue>3</issue><spage>697</spage><epage>732</epage><pages>697-732</pages><issn>0002-9327</issn><issn>1080-6377</issn><eissn>1080-6377</eissn><abstract>We give a dynamical proof of a result of Masser and Zannier: for any $a \neq b \in \overline{\mathbb{Q}} \setminus \left \{ 0, 1 \right \}$, there are only finitely many parameters t ∈ ℂ for which points $P_{a} = (a, \sqrt{a(a-1)(a-t)})$ and $P_{b} = (b, \sqrt{b(b-1)(b-t)})$ are both torsion on the Legendre elliptic curve Et = {y2 = x(x − 1)(x − t)}. Our method also gives the finiteness of parameters t where both Pa and Pb have small Néron-Tate height. A key ingredient in the proof is an arithmetic equidistribution theorem on ℙ1. For this, we prove two statements about the degree-4 Lattès family ft on ℙ1: (1) for each c ∈ ℂ(t), the bifurcation measure μc for the pair (ft,c) has continuous potential across the singular parameters t = 0,1,∞; and (2) for distinct points a,b ∈ ℂ \ {0,1}, the bifurcation measures μa and μb cannot coincide. Combining our methods with the result of Masser and Zannier, we extend their conclusion to points t of small height also for a,b ∈ ℂ(t).</abstract><cop>Baltimore</cop><pub>Johns Hopkins University Press</pub><doi>10.1353/ajm.2016.0026</doi><tpages>36</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9327 |
ispartof | American journal of mathematics, 2016-06, Vol.138 (3), p.697-732 |
issn | 0002-9327 1080-6377 1080-6377 |
language | eng |
recordid | cdi_proquest_journals_1792588056 |
source | Jstor Complete Legacy; Project Muse; JSTOR Mathematics & Statistics |
subjects | Mathematical functions Mathematical problems |
title | TORSION POINTS AND THE LATTÈS FAMILY |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A57%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TORSION%20POINTS%20AND%20THE%20LATT%C3%88S%20FAMILY&rft.jtitle=American%20journal%20of%20mathematics&rft.au=DeMarco,%20Laura&rft.date=2016-06-01&rft.volume=138&rft.issue=3&rft.spage=697&rft.epage=732&rft.pages=697-732&rft.issn=0002-9327&rft.eissn=1080-6377&rft_id=info:doi/10.1353/ajm.2016.0026&rft_dat=%3Cjstor_proqu%3E24736406%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1792588056&rft_id=info:pmid/&rft_jstor_id=24736406&rfr_iscdi=true |