Continuous wire reinforcement for jammed granular architecture

The mechanical behavior of continuous fiber reinforced granular columns is simulated by means of a Discrete Element Model. Spherical particles are randomly deposited simultaneously with a wire, that is deployed following different patterns inside of a flexible cylinder for triaxial compression testi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Granular matter 2016-05, Vol.18 (2), p.1, Article 27
Hauptverfasser: Fauconneau, Matthias, Wittel, Falk K., Herrmann, Hans J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 1
container_title Granular matter
container_volume 18
creator Fauconneau, Matthias
Wittel, Falk K.
Herrmann, Hans J.
description The mechanical behavior of continuous fiber reinforced granular columns is simulated by means of a Discrete Element Model. Spherical particles are randomly deposited simultaneously with a wire, that is deployed following different patterns inside of a flexible cylinder for triaxial compression testing. We quantify the effect of three different fiber deployment patterns on the failure envelope, represented by Mohr–Coulomb cones, and derive suggestions for improved deployment strategies.
doi_str_mv 10.1007/s10035-016-0630-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1792498547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4072508861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-257ff8021eb41118aadf6bf35780fd832144ed290770d1676e363e9b94d96ea3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Fz9VMkybNRZDFL1jwsveQtpO1yzZdJy3ivzdL9-DFy8x7eD_gYewW-D1wrh9iuqLMOaicK8FzecYWIIXMtRLq_KRLXsAlu4pxxzmUBvSCPa6GMHZhGqaYfXeEGWEX_EAN9hjGLKls5_oe22xLLkx7R5mj5rMbsRknwmt24d0-4s3pL9nm5XmzesvXH6_vq6d13ghQY16U2vsqrWMtAaByrvWq9qLUFfdtJQqQEtvCcK15C0orFEqgqY1sjUInluxurj3Q8DVhHO1umCikRQvaFNJUpdTJBbOroSFGQm8P1PWOfixwe6RkZ0o2UbJHSlamTDFnYvKGLdKf5n9Dv8nWaZo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1792498547</pqid></control><display><type>article</type><title>Continuous wire reinforcement for jammed granular architecture</title><source>Springer Nature - Complete Springer Journals</source><creator>Fauconneau, Matthias ; Wittel, Falk K. ; Herrmann, Hans J.</creator><creatorcontrib>Fauconneau, Matthias ; Wittel, Falk K. ; Herrmann, Hans J.</creatorcontrib><description>The mechanical behavior of continuous fiber reinforced granular columns is simulated by means of a Discrete Element Model. Spherical particles are randomly deposited simultaneously with a wire, that is deployed following different patterns inside of a flexible cylinder for triaxial compression testing. We quantify the effect of three different fiber deployment patterns on the failure envelope, represented by Mohr–Coulomb cones, and derive suggestions for improved deployment strategies.</description><identifier>ISSN: 1434-5021</identifier><identifier>EISSN: 1434-7636</identifier><identifier>DOI: 10.1007/s10035-016-0630-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complex Fluids and Microfluidics ; Discrete element method ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Fiber reinforcement ; Foundations ; Geoengineering ; Granular materials ; Heat and Mass Transfer ; Hydraulics ; Industrial Chemistry/Chemical Engineering ; Jamming-Based Aleatory Architectures ; Materials Science ; Original Paper ; Physics ; Physics and Astronomy ; Sand &amp; gravel ; Soft and Granular Matter</subject><ispartof>Granular matter, 2016-05, Vol.18 (2), p.1, Article 27</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-257ff8021eb41118aadf6bf35780fd832144ed290770d1676e363e9b94d96ea3</citedby><cites>FETCH-LOGICAL-c316t-257ff8021eb41118aadf6bf35780fd832144ed290770d1676e363e9b94d96ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10035-016-0630-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10035-016-0630-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Fauconneau, Matthias</creatorcontrib><creatorcontrib>Wittel, Falk K.</creatorcontrib><creatorcontrib>Herrmann, Hans J.</creatorcontrib><title>Continuous wire reinforcement for jammed granular architecture</title><title>Granular matter</title><addtitle>Granular Matter</addtitle><description>The mechanical behavior of continuous fiber reinforced granular columns is simulated by means of a Discrete Element Model. Spherical particles are randomly deposited simultaneously with a wire, that is deployed following different patterns inside of a flexible cylinder for triaxial compression testing. We quantify the effect of three different fiber deployment patterns on the failure envelope, represented by Mohr–Coulomb cones, and derive suggestions for improved deployment strategies.</description><subject>Complex Fluids and Microfluidics</subject><subject>Discrete element method</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Fiber reinforcement</subject><subject>Foundations</subject><subject>Geoengineering</subject><subject>Granular materials</subject><subject>Heat and Mass Transfer</subject><subject>Hydraulics</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Jamming-Based Aleatory Architectures</subject><subject>Materials Science</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Sand &amp; gravel</subject><subject>Soft and Granular Matter</subject><issn>1434-5021</issn><issn>1434-7636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8Fz9VMkybNRZDFL1jwsveQtpO1yzZdJy3ivzdL9-DFy8x7eD_gYewW-D1wrh9iuqLMOaicK8FzecYWIIXMtRLq_KRLXsAlu4pxxzmUBvSCPa6GMHZhGqaYfXeEGWEX_EAN9hjGLKls5_oe22xLLkx7R5mj5rMbsRknwmt24d0-4s3pL9nm5XmzesvXH6_vq6d13ghQY16U2vsqrWMtAaByrvWq9qLUFfdtJQqQEtvCcK15C0orFEqgqY1sjUInluxurj3Q8DVhHO1umCikRQvaFNJUpdTJBbOroSFGQm8P1PWOfixwe6RkZ0o2UbJHSlamTDFnYvKGLdKf5n9Dv8nWaZo</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Fauconneau, Matthias</creator><creator>Wittel, Falk K.</creator><creator>Herrmann, Hans J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20160501</creationdate><title>Continuous wire reinforcement for jammed granular architecture</title><author>Fauconneau, Matthias ; Wittel, Falk K. ; Herrmann, Hans J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-257ff8021eb41118aadf6bf35780fd832144ed290770d1676e363e9b94d96ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Complex Fluids and Microfluidics</topic><topic>Discrete element method</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Fiber reinforcement</topic><topic>Foundations</topic><topic>Geoengineering</topic><topic>Granular materials</topic><topic>Heat and Mass Transfer</topic><topic>Hydraulics</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Jamming-Based Aleatory Architectures</topic><topic>Materials Science</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Sand &amp; gravel</topic><topic>Soft and Granular Matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fauconneau, Matthias</creatorcontrib><creatorcontrib>Wittel, Falk K.</creatorcontrib><creatorcontrib>Herrmann, Hans J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Granular matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fauconneau, Matthias</au><au>Wittel, Falk K.</au><au>Herrmann, Hans J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous wire reinforcement for jammed granular architecture</atitle><jtitle>Granular matter</jtitle><stitle>Granular Matter</stitle><date>2016-05-01</date><risdate>2016</risdate><volume>18</volume><issue>2</issue><spage>1</spage><pages>1-</pages><artnum>27</artnum><issn>1434-5021</issn><eissn>1434-7636</eissn><abstract>The mechanical behavior of continuous fiber reinforced granular columns is simulated by means of a Discrete Element Model. Spherical particles are randomly deposited simultaneously with a wire, that is deployed following different patterns inside of a flexible cylinder for triaxial compression testing. We quantify the effect of three different fiber deployment patterns on the failure envelope, represented by Mohr–Coulomb cones, and derive suggestions for improved deployment strategies.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10035-016-0630-4</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-5021
ispartof Granular matter, 2016-05, Vol.18 (2), p.1, Article 27
issn 1434-5021
1434-7636
language eng
recordid cdi_proquest_journals_1792498547
source Springer Nature - Complete Springer Journals
subjects Complex Fluids and Microfluidics
Discrete element method
Engineering Fluid Dynamics
Engineering Thermodynamics
Fiber reinforcement
Foundations
Geoengineering
Granular materials
Heat and Mass Transfer
Hydraulics
Industrial Chemistry/Chemical Engineering
Jamming-Based Aleatory Architectures
Materials Science
Original Paper
Physics
Physics and Astronomy
Sand & gravel
Soft and Granular Matter
title Continuous wire reinforcement for jammed granular architecture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A03%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20wire%20reinforcement%20for%20jammed%20granular%20architecture&rft.jtitle=Granular%20matter&rft.au=Fauconneau,%20Matthias&rft.date=2016-05-01&rft.volume=18&rft.issue=2&rft.spage=1&rft.pages=1-&rft.artnum=27&rft.issn=1434-5021&rft.eissn=1434-7636&rft_id=info:doi/10.1007/s10035-016-0630-4&rft_dat=%3Cproquest_cross%3E4072508861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1792498547&rft_id=info:pmid/&rfr_iscdi=true