Continuous wire reinforcement for jammed granular architecture
The mechanical behavior of continuous fiber reinforced granular columns is simulated by means of a Discrete Element Model. Spherical particles are randomly deposited simultaneously with a wire, that is deployed following different patterns inside of a flexible cylinder for triaxial compression testi...
Gespeichert in:
Veröffentlicht in: | Granular matter 2016-05, Vol.18 (2), p.1, Article 27 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | Granular matter |
container_volume | 18 |
creator | Fauconneau, Matthias Wittel, Falk K. Herrmann, Hans J. |
description | The mechanical behavior of continuous fiber reinforced granular columns is simulated by means of a Discrete Element Model. Spherical particles are randomly deposited simultaneously with a wire, that is deployed following different patterns inside of a flexible cylinder for triaxial compression testing. We quantify the effect of three different fiber deployment patterns on the failure envelope, represented by Mohr–Coulomb cones, and derive suggestions for improved deployment strategies. |
doi_str_mv | 10.1007/s10035-016-0630-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1792498547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4072508861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-257ff8021eb41118aadf6bf35780fd832144ed290770d1676e363e9b94d96ea3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Fz9VMkybNRZDFL1jwsveQtpO1yzZdJy3ivzdL9-DFy8x7eD_gYewW-D1wrh9iuqLMOaicK8FzecYWIIXMtRLq_KRLXsAlu4pxxzmUBvSCPa6GMHZhGqaYfXeEGWEX_EAN9hjGLKls5_oe22xLLkx7R5mj5rMbsRknwmt24d0-4s3pL9nm5XmzesvXH6_vq6d13ghQY16U2vsqrWMtAaByrvWq9qLUFfdtJQqQEtvCcK15C0orFEqgqY1sjUInluxurj3Q8DVhHO1umCikRQvaFNJUpdTJBbOroSFGQm8P1PWOfixwe6RkZ0o2UbJHSlamTDFnYvKGLdKf5n9Dv8nWaZo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1792498547</pqid></control><display><type>article</type><title>Continuous wire reinforcement for jammed granular architecture</title><source>Springer Nature - Complete Springer Journals</source><creator>Fauconneau, Matthias ; Wittel, Falk K. ; Herrmann, Hans J.</creator><creatorcontrib>Fauconneau, Matthias ; Wittel, Falk K. ; Herrmann, Hans J.</creatorcontrib><description>The mechanical behavior of continuous fiber reinforced granular columns is simulated by means of a Discrete Element Model. Spherical particles are randomly deposited simultaneously with a wire, that is deployed following different patterns inside of a flexible cylinder for triaxial compression testing. We quantify the effect of three different fiber deployment patterns on the failure envelope, represented by Mohr–Coulomb cones, and derive suggestions for improved deployment strategies.</description><identifier>ISSN: 1434-5021</identifier><identifier>EISSN: 1434-7636</identifier><identifier>DOI: 10.1007/s10035-016-0630-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complex Fluids and Microfluidics ; Discrete element method ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Fiber reinforcement ; Foundations ; Geoengineering ; Granular materials ; Heat and Mass Transfer ; Hydraulics ; Industrial Chemistry/Chemical Engineering ; Jamming-Based Aleatory Architectures ; Materials Science ; Original Paper ; Physics ; Physics and Astronomy ; Sand & gravel ; Soft and Granular Matter</subject><ispartof>Granular matter, 2016-05, Vol.18 (2), p.1, Article 27</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-257ff8021eb41118aadf6bf35780fd832144ed290770d1676e363e9b94d96ea3</citedby><cites>FETCH-LOGICAL-c316t-257ff8021eb41118aadf6bf35780fd832144ed290770d1676e363e9b94d96ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10035-016-0630-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10035-016-0630-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Fauconneau, Matthias</creatorcontrib><creatorcontrib>Wittel, Falk K.</creatorcontrib><creatorcontrib>Herrmann, Hans J.</creatorcontrib><title>Continuous wire reinforcement for jammed granular architecture</title><title>Granular matter</title><addtitle>Granular Matter</addtitle><description>The mechanical behavior of continuous fiber reinforced granular columns is simulated by means of a Discrete Element Model. Spherical particles are randomly deposited simultaneously with a wire, that is deployed following different patterns inside of a flexible cylinder for triaxial compression testing. We quantify the effect of three different fiber deployment patterns on the failure envelope, represented by Mohr–Coulomb cones, and derive suggestions for improved deployment strategies.</description><subject>Complex Fluids and Microfluidics</subject><subject>Discrete element method</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Fiber reinforcement</subject><subject>Foundations</subject><subject>Geoengineering</subject><subject>Granular materials</subject><subject>Heat and Mass Transfer</subject><subject>Hydraulics</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Jamming-Based Aleatory Architectures</subject><subject>Materials Science</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Sand & gravel</subject><subject>Soft and Granular Matter</subject><issn>1434-5021</issn><issn>1434-7636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8Fz9VMkybNRZDFL1jwsveQtpO1yzZdJy3ivzdL9-DFy8x7eD_gYewW-D1wrh9iuqLMOaicK8FzecYWIIXMtRLq_KRLXsAlu4pxxzmUBvSCPa6GMHZhGqaYfXeEGWEX_EAN9hjGLKls5_oe22xLLkx7R5mj5rMbsRknwmt24d0-4s3pL9nm5XmzesvXH6_vq6d13ghQY16U2vsqrWMtAaByrvWq9qLUFfdtJQqQEtvCcK15C0orFEqgqY1sjUInluxurj3Q8DVhHO1umCikRQvaFNJUpdTJBbOroSFGQm8P1PWOfixwe6RkZ0o2UbJHSlamTDFnYvKGLdKf5n9Dv8nWaZo</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Fauconneau, Matthias</creator><creator>Wittel, Falk K.</creator><creator>Herrmann, Hans J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20160501</creationdate><title>Continuous wire reinforcement for jammed granular architecture</title><author>Fauconneau, Matthias ; Wittel, Falk K. ; Herrmann, Hans J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-257ff8021eb41118aadf6bf35780fd832144ed290770d1676e363e9b94d96ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Complex Fluids and Microfluidics</topic><topic>Discrete element method</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Fiber reinforcement</topic><topic>Foundations</topic><topic>Geoengineering</topic><topic>Granular materials</topic><topic>Heat and Mass Transfer</topic><topic>Hydraulics</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Jamming-Based Aleatory Architectures</topic><topic>Materials Science</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Sand & gravel</topic><topic>Soft and Granular Matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fauconneau, Matthias</creatorcontrib><creatorcontrib>Wittel, Falk K.</creatorcontrib><creatorcontrib>Herrmann, Hans J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Granular matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fauconneau, Matthias</au><au>Wittel, Falk K.</au><au>Herrmann, Hans J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous wire reinforcement for jammed granular architecture</atitle><jtitle>Granular matter</jtitle><stitle>Granular Matter</stitle><date>2016-05-01</date><risdate>2016</risdate><volume>18</volume><issue>2</issue><spage>1</spage><pages>1-</pages><artnum>27</artnum><issn>1434-5021</issn><eissn>1434-7636</eissn><abstract>The mechanical behavior of continuous fiber reinforced granular columns is simulated by means of a Discrete Element Model. Spherical particles are randomly deposited simultaneously with a wire, that is deployed following different patterns inside of a flexible cylinder for triaxial compression testing. We quantify the effect of three different fiber deployment patterns on the failure envelope, represented by Mohr–Coulomb cones, and derive suggestions for improved deployment strategies.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10035-016-0630-4</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-5021 |
ispartof | Granular matter, 2016-05, Vol.18 (2), p.1, Article 27 |
issn | 1434-5021 1434-7636 |
language | eng |
recordid | cdi_proquest_journals_1792498547 |
source | Springer Nature - Complete Springer Journals |
subjects | Complex Fluids and Microfluidics Discrete element method Engineering Fluid Dynamics Engineering Thermodynamics Fiber reinforcement Foundations Geoengineering Granular materials Heat and Mass Transfer Hydraulics Industrial Chemistry/Chemical Engineering Jamming-Based Aleatory Architectures Materials Science Original Paper Physics Physics and Astronomy Sand & gravel Soft and Granular Matter |
title | Continuous wire reinforcement for jammed granular architecture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A03%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20wire%20reinforcement%20for%20jammed%20granular%20architecture&rft.jtitle=Granular%20matter&rft.au=Fauconneau,%20Matthias&rft.date=2016-05-01&rft.volume=18&rft.issue=2&rft.spage=1&rft.pages=1-&rft.artnum=27&rft.issn=1434-5021&rft.eissn=1434-7636&rft_id=info:doi/10.1007/s10035-016-0630-4&rft_dat=%3Cproquest_cross%3E4072508861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1792498547&rft_id=info:pmid/&rfr_iscdi=true |