Euclidean Networks with a Backbone and a Limit Theorem for Minimum Spanning Caterpillars

A caterpillar network (or graph) G is a tree with the property that removal of the leaf edges of G leaves one with a path. Here we focus on minimum weight spanning caterpillars where the vertices are points in the Euclidean plane and the costs of the path edges and the leaf edges are multiples of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of operations research 2015-11, Vol.40 (4), p.992-1004
Hauptverfasser: Jevtić, Petar, Steele, J. Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1004
container_issue 4
container_start_page 992
container_title Mathematics of operations research
container_volume 40
creator Jevtić, Petar
Steele, J. Michael
description A caterpillar network (or graph) G is a tree with the property that removal of the leaf edges of G leaves one with a path. Here we focus on minimum weight spanning caterpillars where the vertices are points in the Euclidean plane and the costs of the path edges and the leaf edges are multiples of their corresponding Euclidean lengths. The flexibility in choosing the weight for path edges versus the weight for leaf edges gives some useful flexibility in modeling. In particular, one can accommodate problems motivated by communications theory such as the “last mile problem.” Geometric and probabilistic inequalities are developed that lead to a limit theorem that is analogous to the well-known Beardwood, Halton, and Hammersley theorem for the length of the shortest tour through a random sample, but the minimal spanning caterpillars fall outside the scope of the theory of subadditive Euclidean functionals.
doi_str_mv 10.1287/moor.2014.0706
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1791031049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A435717649</galeid><jstor_id>24540988</jstor_id><sourcerecordid>A435717649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-dca96f9bd51998fd2510e6475d85d2ef84164f32540aad3c04a2a2897551a4a93</originalsourceid><addsrcrecordid>eNqFkuGLFCEYxocoaLv62rdA6FPQbOroOH68lqsOtoLugvsm7zrOrHszuqcOV_99Tlt0CwshKK_-nld9eIriJcFLQhvxbvQ-LCkmbIkFrh8VC8JpXXImyONigaualaLmN0-LZzHuMCZcELYobi4mPdjWgENfTLr34Taie5u2CNB70Lcb7wwC1-ZybUeb0PXW-GBG1PmAPltnx2lEV3twzroerSCZsLfDACE-L550METz4s96Vnz_cHG9-lSuv368XJ2vS82pTGWrQdad3LScSNl0LeUEm5oJ3ja8paZrGKlZV1HOMEBbacyAAm2k4JwAA1mdFa8PfffB300mJrXzU3D5SkWEJLgimD2gehiMsq7zKYAebdTqnFXZClH_psoTVG-cCTBkJzqbt4_45Qk-j9aMVp8UvDkSZCaZH6mHKUZ1efXtmH37gN1M0ToT8xRtv03xIDn1Fh18jMF0ah_sCOGnIljN-VBzPtScDzXnIwteHQS7mPLBX5qybLVsmn9mzP8KY_xfv1-yz8Mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1791031049</pqid></control><display><type>article</type><title>Euclidean Networks with a Backbone and a Limit Theorem for Minimum Spanning Caterpillars</title><source>Informs</source><source>JSTOR Mathematics &amp; Statistics</source><source>EBSCOhost Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Jevtić, Petar ; Steele, J. Michael</creator><creatorcontrib>Jevtić, Petar ; Steele, J. Michael</creatorcontrib><description>A caterpillar network (or graph) G is a tree with the property that removal of the leaf edges of G leaves one with a path. Here we focus on minimum weight spanning caterpillars where the vertices are points in the Euclidean plane and the costs of the path edges and the leaf edges are multiples of their corresponding Euclidean lengths. The flexibility in choosing the weight for path edges versus the weight for leaf edges gives some useful flexibility in modeling. In particular, one can accommodate problems motivated by communications theory such as the “last mile problem.” Geometric and probabilistic inequalities are developed that lead to a limit theorem that is analogous to the well-known Beardwood, Halton, and Hammersley theorem for the length of the shortest tour through a random sample, but the minimal spanning caterpillars fall outside the scope of the theory of subadditive Euclidean functionals.</description><identifier>ISSN: 0364-765X</identifier><identifier>EISSN: 1526-5471</identifier><identifier>DOI: 10.1287/moor.2014.0706</identifier><identifier>CODEN: MOREDQ</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Analysis ; Beardwood, Halton, and Hammersley theorem ; caterpillar graphs ; Central limit theorem ; Euclidean networks ; Euclidean space ; Geometry ; Graph theory ; Gutman graphs ; Mathematical problems ; minimal spanning trees ; shortest paths ; Studies ; subadditive Euclidean functional ; Theorems ; Theoretical mathematics ; traveling salesman problem</subject><ispartof>Mathematics of operations research, 2015-11, Vol.40 (4), p.992-1004</ispartof><rights>Copyright 2015 Institute for Operations Research and the Management Sciences</rights><rights>COPYRIGHT 2015 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Nov 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c529t-dca96f9bd51998fd2510e6475d85d2ef84164f32540aad3c04a2a2897551a4a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24540988$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/moor.2014.0706$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,803,832,3692,27924,27925,58017,58021,58250,58254,62616</link.rule.ids></links><search><creatorcontrib>Jevtić, Petar</creatorcontrib><creatorcontrib>Steele, J. Michael</creatorcontrib><title>Euclidean Networks with a Backbone and a Limit Theorem for Minimum Spanning Caterpillars</title><title>Mathematics of operations research</title><description>A caterpillar network (or graph) G is a tree with the property that removal of the leaf edges of G leaves one with a path. Here we focus on minimum weight spanning caterpillars where the vertices are points in the Euclidean plane and the costs of the path edges and the leaf edges are multiples of their corresponding Euclidean lengths. The flexibility in choosing the weight for path edges versus the weight for leaf edges gives some useful flexibility in modeling. In particular, one can accommodate problems motivated by communications theory such as the “last mile problem.” Geometric and probabilistic inequalities are developed that lead to a limit theorem that is analogous to the well-known Beardwood, Halton, and Hammersley theorem for the length of the shortest tour through a random sample, but the minimal spanning caterpillars fall outside the scope of the theory of subadditive Euclidean functionals.</description><subject>Analysis</subject><subject>Beardwood, Halton, and Hammersley theorem</subject><subject>caterpillar graphs</subject><subject>Central limit theorem</subject><subject>Euclidean networks</subject><subject>Euclidean space</subject><subject>Geometry</subject><subject>Graph theory</subject><subject>Gutman graphs</subject><subject>Mathematical problems</subject><subject>minimal spanning trees</subject><subject>shortest paths</subject><subject>Studies</subject><subject>subadditive Euclidean functional</subject><subject>Theorems</subject><subject>Theoretical mathematics</subject><subject>traveling salesman problem</subject><issn>0364-765X</issn><issn>1526-5471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqFkuGLFCEYxocoaLv62rdA6FPQbOroOH68lqsOtoLugvsm7zrOrHszuqcOV_99Tlt0CwshKK_-nld9eIriJcFLQhvxbvQ-LCkmbIkFrh8VC8JpXXImyONigaualaLmN0-LZzHuMCZcELYobi4mPdjWgENfTLr34Taie5u2CNB70Lcb7wwC1-ZybUeb0PXW-GBG1PmAPltnx2lEV3twzroerSCZsLfDACE-L550METz4s96Vnz_cHG9-lSuv368XJ2vS82pTGWrQdad3LScSNl0LeUEm5oJ3ja8paZrGKlZV1HOMEBbacyAAm2k4JwAA1mdFa8PfffB300mJrXzU3D5SkWEJLgimD2gehiMsq7zKYAebdTqnFXZClH_psoTVG-cCTBkJzqbt4_45Qk-j9aMVp8UvDkSZCaZH6mHKUZ1efXtmH37gN1M0ToT8xRtv03xIDn1Fh18jMF0ah_sCOGnIljN-VBzPtScDzXnIwteHQS7mPLBX5qybLVsmn9mzP8KY_xfv1-yz8Mg</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Jevtić, Petar</creator><creator>Steele, J. Michael</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>JQ2</scope></search><sort><creationdate>20151101</creationdate><title>Euclidean Networks with a Backbone and a Limit Theorem for Minimum Spanning Caterpillars</title><author>Jevtić, Petar ; Steele, J. Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-dca96f9bd51998fd2510e6475d85d2ef84164f32540aad3c04a2a2897551a4a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Beardwood, Halton, and Hammersley theorem</topic><topic>caterpillar graphs</topic><topic>Central limit theorem</topic><topic>Euclidean networks</topic><topic>Euclidean space</topic><topic>Geometry</topic><topic>Graph theory</topic><topic>Gutman graphs</topic><topic>Mathematical problems</topic><topic>minimal spanning trees</topic><topic>shortest paths</topic><topic>Studies</topic><topic>subadditive Euclidean functional</topic><topic>Theorems</topic><topic>Theoretical mathematics</topic><topic>traveling salesman problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jevtić, Petar</creatorcontrib><creatorcontrib>Steele, J. Michael</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Mathematics of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jevtić, Petar</au><au>Steele, J. Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Euclidean Networks with a Backbone and a Limit Theorem for Minimum Spanning Caterpillars</atitle><jtitle>Mathematics of operations research</jtitle><date>2015-11-01</date><risdate>2015</risdate><volume>40</volume><issue>4</issue><spage>992</spage><epage>1004</epage><pages>992-1004</pages><issn>0364-765X</issn><eissn>1526-5471</eissn><coden>MOREDQ</coden><abstract>A caterpillar network (or graph) G is a tree with the property that removal of the leaf edges of G leaves one with a path. Here we focus on minimum weight spanning caterpillars where the vertices are points in the Euclidean plane and the costs of the path edges and the leaf edges are multiples of their corresponding Euclidean lengths. The flexibility in choosing the weight for path edges versus the weight for leaf edges gives some useful flexibility in modeling. In particular, one can accommodate problems motivated by communications theory such as the “last mile problem.” Geometric and probabilistic inequalities are developed that lead to a limit theorem that is analogous to the well-known Beardwood, Halton, and Hammersley theorem for the length of the shortest tour through a random sample, but the minimal spanning caterpillars fall outside the scope of the theory of subadditive Euclidean functionals.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/moor.2014.0706</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0364-765X
ispartof Mathematics of operations research, 2015-11, Vol.40 (4), p.992-1004
issn 0364-765X
1526-5471
language eng
recordid cdi_proquest_journals_1791031049
source Informs; JSTOR Mathematics & Statistics; EBSCOhost Business Source Complete; JSTOR Archive Collection A-Z Listing
subjects Analysis
Beardwood, Halton, and Hammersley theorem
caterpillar graphs
Central limit theorem
Euclidean networks
Euclidean space
Geometry
Graph theory
Gutman graphs
Mathematical problems
minimal spanning trees
shortest paths
Studies
subadditive Euclidean functional
Theorems
Theoretical mathematics
traveling salesman problem
title Euclidean Networks with a Backbone and a Limit Theorem for Minimum Spanning Caterpillars
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A22%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Euclidean%20Networks%20with%20a%20Backbone%20and%20a%20Limit%20Theorem%20for%20Minimum%20Spanning%20Caterpillars&rft.jtitle=Mathematics%20of%20operations%20research&rft.au=Jevti%C4%87,%20Petar&rft.date=2015-11-01&rft.volume=40&rft.issue=4&rft.spage=992&rft.epage=1004&rft.pages=992-1004&rft.issn=0364-765X&rft.eissn=1526-5471&rft.coden=MOREDQ&rft_id=info:doi/10.1287/moor.2014.0706&rft_dat=%3Cgale_proqu%3EA435717649%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1791031049&rft_id=info:pmid/&rft_galeid=A435717649&rft_jstor_id=24540988&rfr_iscdi=true