Optimal Design and Simulation of High-Performance Organic-Metal Halide Perovskite Solar Cells

The organic-metal halide perovskite solar cells have recently shown the high power conversion efficiency (PCE) exceeding 20%. A better understanding of the relationships between material parameters, device architectures, and performance is still required for the continued development of the perovski...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of quantum electronics 2016-06, Vol.52 (6), p.1-6
Hauptverfasser: Zhang, Ao, Chen, Yunlin, Yan, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 6
container_start_page 1
container_title IEEE journal of quantum electronics
container_volume 52
creator Zhang, Ao
Chen, Yunlin
Yan, Jun
description The organic-metal halide perovskite solar cells have recently shown the high power conversion efficiency (PCE) exceeding 20%. A better understanding of the relationships between material parameters, device architectures, and performance is still required for the continued development of the perovskite solar cells. Three types of architectures are simulated with the program 1-D device simulation program for the analysis of microelectronic and photonic structure. The hole transport material-free MAPbI 3 solar cells attain the simulated PCE of 24.1%. A maximum PCE of 26.60% and a maximum V OC (open-circuit voltage) of 1.83 V for FTO/ZnO/MAPbX 3 (X = I and Br)/CuSCN/Au-based solar cells are predicted, respectively. The FTO/ZnO/MAPbI 3 /MAPbBr 3 /CuSCN/Au-based solar cells first designed possesses a characteristic of tunable PCE and V OC by changing the thicknesses of MAPbI 3 and MAPbBr 3 , and the PCE of 27.50% (J SC = 26.17 mA/cm 2 , V OC = 1.19 V, and FF = 0.88) was obtained. These simulation results can help researchers to reasonably choose materials and optimally design high-performance perovskite solar cells.
doi_str_mv 10.1109/JQE.2016.2563783
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1790691462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7469831</ieee_id><sourcerecordid>1816067984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-a7ee4412b308a558edc5ec21c3bf1a48b1e248c27004586d999b4a78fdd77ea93</originalsourceid><addsrcrecordid>eNpdkEFrGzEQhUVoIa7beyAXQS69rKNZaVfSsThunODgFrfHIGTtrCN3vXKldSH_PjI2PeQ0DHzv8fgIuQI2AWD69vHnbFIyqCdlVXOp-AUZQVWpAiTwD2TEGKhCg5aX5FNK2_wKodiIPC_3g9_Zjt5h8pue2r6hK787dHbwoaehpXO_eSl-YGxD3NneIV3Gje29K55wyLm57XyDNAPhX_rjB6Sr0NlIp9h16TP52Nou4ZfzHZPf32e_pvNisbx_mH5bFI6XYiisRBQCyjVnyubR2LgKXQmOr1uwQq0BS6FcKRkTlaobrfVaWKnappESreZj8vXUu4_h7wHTYHY-ubzA9hgOyYCCmtVSK5HRm3foNhxin9cZkJrVGkRdZoqdKBdDShFbs49ZU3w1wMzRt8m-zdG3OfvOketTxCPif1yKWisO_A08b3sL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790691462</pqid></control><display><type>article</type><title>Optimal Design and Simulation of High-Performance Organic-Metal Halide Perovskite Solar Cells</title><source>IEEE Xplore</source><creator>Zhang, Ao ; Chen, Yunlin ; Yan, Jun</creator><creatorcontrib>Zhang, Ao ; Chen, Yunlin ; Yan, Jun</creatorcontrib><description>The organic-metal halide perovskite solar cells have recently shown the high power conversion efficiency (PCE) exceeding 20%. A better understanding of the relationships between material parameters, device architectures, and performance is still required for the continued development of the perovskite solar cells. Three types of architectures are simulated with the program 1-D device simulation program for the analysis of microelectronic and photonic structure. The hole transport material-free MAPbI 3 solar cells attain the simulated PCE of 24.1%. A maximum PCE of 26.60% and a maximum V OC (open-circuit voltage) of 1.83 V for FTO/ZnO/MAPbX 3 (X = I and Br)/CuSCN/Au-based solar cells are predicted, respectively. The FTO/ZnO/MAPbI 3 /MAPbBr 3 /CuSCN/Au-based solar cells first designed possesses a characteristic of tunable PCE and V OC by changing the thicknesses of MAPbI 3 and MAPbBr 3 , and the PCE of 27.50% (J SC = 26.17 mA/cm 2 , V OC = 1.19 V, and FF = 0.88) was obtained. These simulation results can help researchers to reasonably choose materials and optimally design high-performance perovskite solar cells.</description><identifier>ISSN: 0018-9197</identifier><identifier>EISSN: 1558-1713</identifier><identifier>DOI: 10.1109/JQE.2016.2563783</identifier><identifier>CODEN: IEJQA7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Absorption ; AMPS-1D ; architecture ; Computer architecture ; design ; Devices ; Halides ; Optimization ; Performance evaluation ; perovskite solar cell ; Perovskites ; Photonic band gap ; Photovoltaic cells ; Simulation ; Solar cells ; Zinc oxide</subject><ispartof>IEEE journal of quantum electronics, 2016-06, Vol.52 (6), p.1-6</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-a7ee4412b308a558edc5ec21c3bf1a48b1e248c27004586d999b4a78fdd77ea93</citedby><cites>FETCH-LOGICAL-c324t-a7ee4412b308a558edc5ec21c3bf1a48b1e248c27004586d999b4a78fdd77ea93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7469831$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7469831$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Ao</creatorcontrib><creatorcontrib>Chen, Yunlin</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><title>Optimal Design and Simulation of High-Performance Organic-Metal Halide Perovskite Solar Cells</title><title>IEEE journal of quantum electronics</title><addtitle>JQE</addtitle><description>The organic-metal halide perovskite solar cells have recently shown the high power conversion efficiency (PCE) exceeding 20%. A better understanding of the relationships between material parameters, device architectures, and performance is still required for the continued development of the perovskite solar cells. Three types of architectures are simulated with the program 1-D device simulation program for the analysis of microelectronic and photonic structure. The hole transport material-free MAPbI 3 solar cells attain the simulated PCE of 24.1%. A maximum PCE of 26.60% and a maximum V OC (open-circuit voltage) of 1.83 V for FTO/ZnO/MAPbX 3 (X = I and Br)/CuSCN/Au-based solar cells are predicted, respectively. The FTO/ZnO/MAPbI 3 /MAPbBr 3 /CuSCN/Au-based solar cells first designed possesses a characteristic of tunable PCE and V OC by changing the thicknesses of MAPbI 3 and MAPbBr 3 , and the PCE of 27.50% (J SC = 26.17 mA/cm 2 , V OC = 1.19 V, and FF = 0.88) was obtained. These simulation results can help researchers to reasonably choose materials and optimally design high-performance perovskite solar cells.</description><subject>Absorption</subject><subject>AMPS-1D</subject><subject>architecture</subject><subject>Computer architecture</subject><subject>design</subject><subject>Devices</subject><subject>Halides</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>perovskite solar cell</subject><subject>Perovskites</subject><subject>Photonic band gap</subject><subject>Photovoltaic cells</subject><subject>Simulation</subject><subject>Solar cells</subject><subject>Zinc oxide</subject><issn>0018-9197</issn><issn>1558-1713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEFrGzEQhUVoIa7beyAXQS69rKNZaVfSsThunODgFrfHIGTtrCN3vXKldSH_PjI2PeQ0DHzv8fgIuQI2AWD69vHnbFIyqCdlVXOp-AUZQVWpAiTwD2TEGKhCg5aX5FNK2_wKodiIPC_3g9_Zjt5h8pue2r6hK787dHbwoaehpXO_eSl-YGxD3NneIV3Gje29K55wyLm57XyDNAPhX_rjB6Sr0NlIp9h16TP52Nou4ZfzHZPf32e_pvNisbx_mH5bFI6XYiisRBQCyjVnyubR2LgKXQmOr1uwQq0BS6FcKRkTlaobrfVaWKnappESreZj8vXUu4_h7wHTYHY-ubzA9hgOyYCCmtVSK5HRm3foNhxin9cZkJrVGkRdZoqdKBdDShFbs49ZU3w1wMzRt8m-zdG3OfvOketTxCPif1yKWisO_A08b3sL</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Zhang, Ao</creator><creator>Chen, Yunlin</creator><creator>Yan, Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201606</creationdate><title>Optimal Design and Simulation of High-Performance Organic-Metal Halide Perovskite Solar Cells</title><author>Zhang, Ao ; Chen, Yunlin ; Yan, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-a7ee4412b308a558edc5ec21c3bf1a48b1e248c27004586d999b4a78fdd77ea93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Absorption</topic><topic>AMPS-1D</topic><topic>architecture</topic><topic>Computer architecture</topic><topic>design</topic><topic>Devices</topic><topic>Halides</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>perovskite solar cell</topic><topic>Perovskites</topic><topic>Photonic band gap</topic><topic>Photovoltaic cells</topic><topic>Simulation</topic><topic>Solar cells</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Ao</creatorcontrib><creatorcontrib>Chen, Yunlin</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Ao</au><au>Chen, Yunlin</au><au>Yan, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Design and Simulation of High-Performance Organic-Metal Halide Perovskite Solar Cells</atitle><jtitle>IEEE journal of quantum electronics</jtitle><stitle>JQE</stitle><date>2016-06</date><risdate>2016</risdate><volume>52</volume><issue>6</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>0018-9197</issn><eissn>1558-1713</eissn><coden>IEJQA7</coden><abstract>The organic-metal halide perovskite solar cells have recently shown the high power conversion efficiency (PCE) exceeding 20%. A better understanding of the relationships between material parameters, device architectures, and performance is still required for the continued development of the perovskite solar cells. Three types of architectures are simulated with the program 1-D device simulation program for the analysis of microelectronic and photonic structure. The hole transport material-free MAPbI 3 solar cells attain the simulated PCE of 24.1%. A maximum PCE of 26.60% and a maximum V OC (open-circuit voltage) of 1.83 V for FTO/ZnO/MAPbX 3 (X = I and Br)/CuSCN/Au-based solar cells are predicted, respectively. The FTO/ZnO/MAPbI 3 /MAPbBr 3 /CuSCN/Au-based solar cells first designed possesses a characteristic of tunable PCE and V OC by changing the thicknesses of MAPbI 3 and MAPbBr 3 , and the PCE of 27.50% (J SC = 26.17 mA/cm 2 , V OC = 1.19 V, and FF = 0.88) was obtained. These simulation results can help researchers to reasonably choose materials and optimally design high-performance perovskite solar cells.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JQE.2016.2563783</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9197
ispartof IEEE journal of quantum electronics, 2016-06, Vol.52 (6), p.1-6
issn 0018-9197
1558-1713
language eng
recordid cdi_proquest_journals_1790691462
source IEEE Xplore
subjects Absorption
AMPS-1D
architecture
Computer architecture
design
Devices
Halides
Optimization
Performance evaluation
perovskite solar cell
Perovskites
Photonic band gap
Photovoltaic cells
Simulation
Solar cells
Zinc oxide
title Optimal Design and Simulation of High-Performance Organic-Metal Halide Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A29%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Design%20and%20Simulation%20of%20High-Performance%20Organic-Metal%20Halide%20Perovskite%20Solar%20Cells&rft.jtitle=IEEE%20journal%20of%20quantum%20electronics&rft.au=Zhang,%20Ao&rft.date=2016-06&rft.volume=52&rft.issue=6&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=0018-9197&rft.eissn=1558-1713&rft.coden=IEJQA7&rft_id=info:doi/10.1109/JQE.2016.2563783&rft_dat=%3Cproquest_RIE%3E1816067984%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790691462&rft_id=info:pmid/&rft_ieee_id=7469831&rfr_iscdi=true