Feasibility of Printing Woven Humidity and Temperature Sensors for the Integration into Electronic Textiles

We demonstrate a woven textile with an integrated humidity and temperature sensor on flexible PI substrates. We discuss the fabrication process of the smart textile and compare two methods of sensor fabrication, first conventional photo lithography and second printing using ink jet. The humidity sen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in Science and Technology 2013-01, Vol.80, p.77-82
Hauptverfasser: Kinkeldei, Thomas, Briand, Danick, Ataman, C., Quintero, A. Vasquez, Tröster, G., Mattana, Giorgio, Nisato, G., Leuenberger, David, Lopez, F. Molina, de Rooij, N. F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 82
container_issue
container_start_page 77
container_title Advances in Science and Technology
container_volume 80
creator Kinkeldei, Thomas
Briand, Danick
Ataman, C.
Quintero, A. Vasquez
Tröster, G.
Mattana, Giorgio
Nisato, G.
Leuenberger, David
Lopez, F. Molina
de Rooij, N. F.
description We demonstrate a woven textile with an integrated humidity and temperature sensor on flexible PI substrates. We discuss the fabrication process of the smart textile and compare two methods of sensor fabrication, first conventional photo lithography and second printing using ink jet. The humidity sensor is based on a capacitive interdigitated transducer covered with a sensing layer while the temperature sensor is made of a resistive metallic meander. An encapsulation method protecting the sensors during dicing, weaving and operation has been successfully implemented. The fabricated structures are tested to bending strain, a main source of failure during the fabrication of textiles. We were able to bend bare electrodes and complete sensors down to a minimal bending radius of 100 μm without loss of functionality. The woven temperature sensor has a temperature coefficient of 0.0027 /°C for lithography made and 0.0029 /°C for printed sensors. The humidity sensor shows a repeatable behaviour in the tested humidity range between 20 to 70 %RH. The weaving process does not damage or change the behaviour of the fabricated sensors. This contribution will highlight the challenges and promises of printing and laminating processes for the large scale fabrication of smart polymeric stripes to be woven into textiles.
doi_str_mv 10.4028/www.scientific.net/AST.80.77
format Article
fullrecord <record><control><sourceid>proquest_trans</sourceid><recordid>TN_cdi_proquest_journals_1789859121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4060944191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-408eabc1b636f952f3365987a2728a75a03956333fd9b6588e48c85a553d94233</originalsourceid><addsrcrecordid>eNpNkN1qAjEQhZfSQsX6DoH21jWbmL-bgohWQWhBSy9DXGc1rSY2ibV9-0YU2qsZ5pw5B76ieKhw2cdE9o7HYxlrCy7Zxtalg9QbzBelxKUQV0Wr4px0MWX8-rJLxdVt0YnRLnFVKSIZYa3iYwwmX-zWph_kG_QSbA50a_Tmv8ChyWFnVyfJuBVawG4PwaRDADQHF32IqPEBpQ2gqUuwzpr1DuUEj0ZbqFPwztb57zvZLcS74qYx2widy2wXr-PRYjjpzp6fpsPBrFsTIlK3jyWYZV0tOeWNYqShlDMlhSGCSCOYwVQxTiltVmrJmZTQl7VkhjG6Un1Cabu4P-fug_88QEz63R-Cy5W6ElJJpipSZdfj2ZWCcTFBvflnw_rEWGfG-o-xzox1Zqwl1kLQX3VDd-I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1789859121</pqid></control><display><type>article</type><title>Feasibility of Printing Woven Humidity and Temperature Sensors for the Integration into Electronic Textiles</title><source>Scientific.net Journals</source><creator>Kinkeldei, Thomas ; Briand, Danick ; Ataman, C. ; Quintero, A. Vasquez ; Tröster, G. ; Mattana, Giorgio ; Nisato, G. ; Leuenberger, David ; Lopez, F. Molina ; de Rooij, N. F.</creator><creatorcontrib>Kinkeldei, Thomas ; Briand, Danick ; Ataman, C. ; Quintero, A. Vasquez ; Tröster, G. ; Mattana, Giorgio ; Nisato, G. ; Leuenberger, David ; Lopez, F. Molina ; de Rooij, N. F.</creatorcontrib><description>We demonstrate a woven textile with an integrated humidity and temperature sensor on flexible PI substrates. We discuss the fabrication process of the smart textile and compare two methods of sensor fabrication, first conventional photo lithography and second printing using ink jet. The humidity sensor is based on a capacitive interdigitated transducer covered with a sensing layer while the temperature sensor is made of a resistive metallic meander. An encapsulation method protecting the sensors during dicing, weaving and operation has been successfully implemented. The fabricated structures are tested to bending strain, a main source of failure during the fabrication of textiles. We were able to bend bare electrodes and complete sensors down to a minimal bending radius of 100 μm without loss of functionality. The woven temperature sensor has a temperature coefficient of 0.0027 /°C for lithography made and 0.0029 /°C for printed sensors. The humidity sensor shows a repeatable behaviour in the tested humidity range between 20 to 70 %RH. The weaving process does not damage or change the behaviour of the fabricated sensors. This contribution will highlight the challenges and promises of printing and laminating processes for the large scale fabrication of smart polymeric stripes to be woven into textiles.</description><identifier>ISSN: 1662-8969</identifier><identifier>EISSN: 1662-0356</identifier><identifier>DOI: 10.4028/www.scientific.net/AST.80.77</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Advances in Science and Technology, 2013-01, Vol.80, p.77-82</ispartof><rights>2013 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Sep 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c227t-408eabc1b636f952f3365987a2728a75a03956333fd9b6588e48c85a553d94233</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/1981?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kinkeldei, Thomas</creatorcontrib><creatorcontrib>Briand, Danick</creatorcontrib><creatorcontrib>Ataman, C.</creatorcontrib><creatorcontrib>Quintero, A. Vasquez</creatorcontrib><creatorcontrib>Tröster, G.</creatorcontrib><creatorcontrib>Mattana, Giorgio</creatorcontrib><creatorcontrib>Nisato, G.</creatorcontrib><creatorcontrib>Leuenberger, David</creatorcontrib><creatorcontrib>Lopez, F. Molina</creatorcontrib><creatorcontrib>de Rooij, N. F.</creatorcontrib><title>Feasibility of Printing Woven Humidity and Temperature Sensors for the Integration into Electronic Textiles</title><title>Advances in Science and Technology</title><description>We demonstrate a woven textile with an integrated humidity and temperature sensor on flexible PI substrates. We discuss the fabrication process of the smart textile and compare two methods of sensor fabrication, first conventional photo lithography and second printing using ink jet. The humidity sensor is based on a capacitive interdigitated transducer covered with a sensing layer while the temperature sensor is made of a resistive metallic meander. An encapsulation method protecting the sensors during dicing, weaving and operation has been successfully implemented. The fabricated structures are tested to bending strain, a main source of failure during the fabrication of textiles. We were able to bend bare electrodes and complete sensors down to a minimal bending radius of 100 μm without loss of functionality. The woven temperature sensor has a temperature coefficient of 0.0027 /°C for lithography made and 0.0029 /°C for printed sensors. The humidity sensor shows a repeatable behaviour in the tested humidity range between 20 to 70 %RH. The weaving process does not damage or change the behaviour of the fabricated sensors. This contribution will highlight the challenges and promises of printing and laminating processes for the large scale fabrication of smart polymeric stripes to be woven into textiles.</description><issn>1662-8969</issn><issn>1662-0356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkN1qAjEQhZfSQsX6DoH21jWbmL-bgohWQWhBSy9DXGc1rSY2ibV9-0YU2qsZ5pw5B76ieKhw2cdE9o7HYxlrCy7Zxtalg9QbzBelxKUQV0Wr4px0MWX8-rJLxdVt0YnRLnFVKSIZYa3iYwwmX-zWph_kG_QSbA50a_Tmv8ChyWFnVyfJuBVawG4PwaRDADQHF32IqPEBpQ2gqUuwzpr1DuUEj0ZbqFPwztb57zvZLcS74qYx2widy2wXr-PRYjjpzp6fpsPBrFsTIlK3jyWYZV0tOeWNYqShlDMlhSGCSCOYwVQxTiltVmrJmZTQl7VkhjG6Un1Cabu4P-fug_88QEz63R-Cy5W6ElJJpipSZdfj2ZWCcTFBvflnw_rEWGfG-o-xzox1Zqwl1kLQX3VDd-I</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Kinkeldei, Thomas</creator><creator>Briand, Danick</creator><creator>Ataman, C.</creator><creator>Quintero, A. Vasquez</creator><creator>Tröster, G.</creator><creator>Mattana, Giorgio</creator><creator>Nisato, G.</creator><creator>Leuenberger, David</creator><creator>Lopez, F. Molina</creator><creator>de Rooij, N. F.</creator><general>Trans Tech Publications Ltd</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20130101</creationdate><title>Feasibility of Printing Woven Humidity and Temperature Sensors for the Integration into Electronic Textiles</title><author>Kinkeldei, Thomas ; Briand, Danick ; Ataman, C. ; Quintero, A. Vasquez ; Tröster, G. ; Mattana, Giorgio ; Nisato, G. ; Leuenberger, David ; Lopez, F. Molina ; de Rooij, N. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-408eabc1b636f952f3365987a2728a75a03956333fd9b6588e48c85a553d94233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kinkeldei, Thomas</creatorcontrib><creatorcontrib>Briand, Danick</creatorcontrib><creatorcontrib>Ataman, C.</creatorcontrib><creatorcontrib>Quintero, A. Vasquez</creatorcontrib><creatorcontrib>Tröster, G.</creatorcontrib><creatorcontrib>Mattana, Giorgio</creatorcontrib><creatorcontrib>Nisato, G.</creatorcontrib><creatorcontrib>Leuenberger, David</creatorcontrib><creatorcontrib>Lopez, F. Molina</creatorcontrib><creatorcontrib>de Rooij, N. F.</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Advances in Science and Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kinkeldei, Thomas</au><au>Briand, Danick</au><au>Ataman, C.</au><au>Quintero, A. Vasquez</au><au>Tröster, G.</au><au>Mattana, Giorgio</au><au>Nisato, G.</au><au>Leuenberger, David</au><au>Lopez, F. Molina</au><au>de Rooij, N. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feasibility of Printing Woven Humidity and Temperature Sensors for the Integration into Electronic Textiles</atitle><jtitle>Advances in Science and Technology</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>80</volume><spage>77</spage><epage>82</epage><pages>77-82</pages><issn>1662-8969</issn><eissn>1662-0356</eissn><abstract>We demonstrate a woven textile with an integrated humidity and temperature sensor on flexible PI substrates. We discuss the fabrication process of the smart textile and compare two methods of sensor fabrication, first conventional photo lithography and second printing using ink jet. The humidity sensor is based on a capacitive interdigitated transducer covered with a sensing layer while the temperature sensor is made of a resistive metallic meander. An encapsulation method protecting the sensors during dicing, weaving and operation has been successfully implemented. The fabricated structures are tested to bending strain, a main source of failure during the fabrication of textiles. We were able to bend bare electrodes and complete sensors down to a minimal bending radius of 100 μm without loss of functionality. The woven temperature sensor has a temperature coefficient of 0.0027 /°C for lithography made and 0.0029 /°C for printed sensors. The humidity sensor shows a repeatable behaviour in the tested humidity range between 20 to 70 %RH. The weaving process does not damage or change the behaviour of the fabricated sensors. This contribution will highlight the challenges and promises of printing and laminating processes for the large scale fabrication of smart polymeric stripes to be woven into textiles.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AST.80.77</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1662-8969
ispartof Advances in Science and Technology, 2013-01, Vol.80, p.77-82
issn 1662-8969
1662-0356
language eng
recordid cdi_proquest_journals_1789859121
source Scientific.net Journals
title Feasibility of Printing Woven Humidity and Temperature Sensors for the Integration into Electronic Textiles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T10%3A42%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_trans&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feasibility%20of%20Printing%20Woven%20Humidity%20and%20Temperature%20Sensors%20for%20the%20Integration%20into%20Electronic%20Textiles&rft.jtitle=Advances%20in%20Science%20and%20Technology&rft.au=Kinkeldei,%20Thomas&rft.date=2013-01-01&rft.volume=80&rft.spage=77&rft.epage=82&rft.pages=77-82&rft.issn=1662-8969&rft.eissn=1662-0356&rft_id=info:doi/10.4028/www.scientific.net/AST.80.77&rft_dat=%3Cproquest_trans%3E4060944191%3C/proquest_trans%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1789859121&rft_id=info:pmid/&rfr_iscdi=true