A descending dopamine pathway conserved from basal vertebrates to mammals
Dopamine neurons are classically known to modulate locomotion indirectly through ascending projections to the basal ganglia that project down to brainstem locomotor networks. Their loss in Parkinson’s disease is devastating. In lampreys, we recently showed that brainstem networks also receive direct...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2016-04, Vol.113 (17), p.E2440-E2449 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E2449 |
---|---|
container_issue | 17 |
container_start_page | E2440 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 113 |
creator | Ryczko, Dimitri Cone, Jackson J. Alpert, Michael H. Goetz, Laurent Auclair, François Dubé, Catherine Parent, Martin Roitman, Mitchell F. Alford, Simon Dubuc, Réjean |
description | Dopamine neurons are classically known to modulate locomotion indirectly through ascending projections to the basal ganglia that project down to brainstem locomotor networks. Their loss in Parkinson’s disease is devastating. In lampreys, we recently showed that brainstem networks also receive direct descending dopaminergic inputs that potentiate locomotor output. Here, we provide evidence that this descending dopaminergic pathway is conserved to higher vertebrates, including mammals. In salamanders, dopamine neurons projecting to the striatum or brainstem locomotor networks were partly intermingled. Stimulation of the dopaminergic region evoked dopamine release in brainstem locomotor networks and concurrent reticulospinal activity. In rats, some dopamine neurons projecting to the striatum also innervated the pedunculopontine nucleus, a known locomotor center, and stimulation of the dopaminergic region evoked pedunculopontine dopamine release in vivo. Finally, we found dopaminergic fibers in the human pedunculopontine nucleus. The conservation of a descending dopaminergic pathway across vertebrates warrants re-evaluating dopamine’s role in locomotion. |
doi_str_mv | 10.1073/pnas.1600684113 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1789526423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26469456</jstor_id><sourcerecordid>26469456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-cc6aa409f1b21fd86c538e1d025bda63e4aff2404f1507b8dfeaacf210d87f913</originalsourceid><addsrcrecordid>eNqFkUFv3CAQRlHVqtmmPffUCqmXXpzMYAz4UimK0iZSpFySM8IGEq9s44J3o_z7Yu1mk_ZSLnPgzWOYj5DPCCcIsjydRpNOUAAIxRHLN2SFUGMheA1vyQqAyUJxxo_Ih5TWAFBXCt6TIyZBIqJakaszal1q3Wi78Z7aMJmhGx2dzPzwaJ5oG8bk4tZZ6mMYaGOS6enWxdk10cwu0TnQwQyD6dNH8s7n4j7t6zG5-3lxe35ZXN_8ujo_uy7aSsi5aFthDIfaY8PQWyXaqlQOLbCqsUaUjhvvGQfusQLZKOudMa1nCFZJX2N5TH7svNOmGZzNo8_R9HqK3WDikw6m03_fjN2Dvg9bzVWVj8iC73tBDL83Ls166PIG-t6MLmySRgUMaymr8v-oVBVDwZjM6Ld_0HXYxDFvYqHqignOFuHpjmpjSCk6f5gbQS-J6iVR_ZJo7vj6-rsH_jnCDNA9sHQedFjmd_UF4xwy8mWHrNMc4otCcFHzvJE_mx6xbA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1789526423</pqid></control><display><type>article</type><title>A descending dopamine pathway conserved from basal vertebrates to mammals</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ryczko, Dimitri ; Cone, Jackson J. ; Alpert, Michael H. ; Goetz, Laurent ; Auclair, François ; Dubé, Catherine ; Parent, Martin ; Roitman, Mitchell F. ; Alford, Simon ; Dubuc, Réjean</creator><creatorcontrib>Ryczko, Dimitri ; Cone, Jackson J. ; Alpert, Michael H. ; Goetz, Laurent ; Auclair, François ; Dubé, Catherine ; Parent, Martin ; Roitman, Mitchell F. ; Alford, Simon ; Dubuc, Réjean</creatorcontrib><description>Dopamine neurons are classically known to modulate locomotion indirectly through ascending projections to the basal ganglia that project down to brainstem locomotor networks. Their loss in Parkinson’s disease is devastating. In lampreys, we recently showed that brainstem networks also receive direct descending dopaminergic inputs that potentiate locomotor output. Here, we provide evidence that this descending dopaminergic pathway is conserved to higher vertebrates, including mammals. In salamanders, dopamine neurons projecting to the striatum or brainstem locomotor networks were partly intermingled. Stimulation of the dopaminergic region evoked dopamine release in brainstem locomotor networks and concurrent reticulospinal activity. In rats, some dopamine neurons projecting to the striatum also innervated the pedunculopontine nucleus, a known locomotor center, and stimulation of the dopaminergic region evoked pedunculopontine dopamine release in vivo. Finally, we found dopaminergic fibers in the human pedunculopontine nucleus. The conservation of a descending dopaminergic pathway across vertebrates warrants re-evaluating dopamine’s role in locomotion.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1600684113</identifier><identifier>PMID: 27071118</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Aged ; Animals ; Biological Evolution ; Biological Sciences ; Brain ; Brain Stem - physiology ; Caudata ; Corpus Striatum - physiology ; Dopamine ; Dopaminergic Neurons - physiology ; Female ; Humans ; Lampreys - physiology ; Locomotion - physiology ; Male ; Mammals ; Motor Cortex - physiology ; Neurons ; Pedunculopontine Tegmental Nucleus - physiology ; Petromyzontidae ; PNAS Plus ; Rats ; Rats, Sprague-Dawley ; Rats, Transgenic ; Rodents ; Urodela - physiology ; Vertebrates</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-04, Vol.113 (17), p.E2440-E2449</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Apr 26, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-cc6aa409f1b21fd86c538e1d025bda63e4aff2404f1507b8dfeaacf210d87f913</citedby><cites>FETCH-LOGICAL-c567t-cc6aa409f1b21fd86c538e1d025bda63e4aff2404f1507b8dfeaacf210d87f913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/113/17.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26469456$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26469456$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27071118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ryczko, Dimitri</creatorcontrib><creatorcontrib>Cone, Jackson J.</creatorcontrib><creatorcontrib>Alpert, Michael H.</creatorcontrib><creatorcontrib>Goetz, Laurent</creatorcontrib><creatorcontrib>Auclair, François</creatorcontrib><creatorcontrib>Dubé, Catherine</creatorcontrib><creatorcontrib>Parent, Martin</creatorcontrib><creatorcontrib>Roitman, Mitchell F.</creatorcontrib><creatorcontrib>Alford, Simon</creatorcontrib><creatorcontrib>Dubuc, Réjean</creatorcontrib><title>A descending dopamine pathway conserved from basal vertebrates to mammals</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Dopamine neurons are classically known to modulate locomotion indirectly through ascending projections to the basal ganglia that project down to brainstem locomotor networks. Their loss in Parkinson’s disease is devastating. In lampreys, we recently showed that brainstem networks also receive direct descending dopaminergic inputs that potentiate locomotor output. Here, we provide evidence that this descending dopaminergic pathway is conserved to higher vertebrates, including mammals. In salamanders, dopamine neurons projecting to the striatum or brainstem locomotor networks were partly intermingled. Stimulation of the dopaminergic region evoked dopamine release in brainstem locomotor networks and concurrent reticulospinal activity. In rats, some dopamine neurons projecting to the striatum also innervated the pedunculopontine nucleus, a known locomotor center, and stimulation of the dopaminergic region evoked pedunculopontine dopamine release in vivo. Finally, we found dopaminergic fibers in the human pedunculopontine nucleus. The conservation of a descending dopaminergic pathway across vertebrates warrants re-evaluating dopamine’s role in locomotion.</description><subject>Aged</subject><subject>Animals</subject><subject>Biological Evolution</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Brain Stem - physiology</subject><subject>Caudata</subject><subject>Corpus Striatum - physiology</subject><subject>Dopamine</subject><subject>Dopaminergic Neurons - physiology</subject><subject>Female</subject><subject>Humans</subject><subject>Lampreys - physiology</subject><subject>Locomotion - physiology</subject><subject>Male</subject><subject>Mammals</subject><subject>Motor Cortex - physiology</subject><subject>Neurons</subject><subject>Pedunculopontine Tegmental Nucleus - physiology</subject><subject>Petromyzontidae</subject><subject>PNAS Plus</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Rats, Transgenic</subject><subject>Rodents</subject><subject>Urodela - physiology</subject><subject>Vertebrates</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv3CAQRlHVqtmmPffUCqmXXpzMYAz4UimK0iZSpFySM8IGEq9s44J3o_z7Yu1mk_ZSLnPgzWOYj5DPCCcIsjydRpNOUAAIxRHLN2SFUGMheA1vyQqAyUJxxo_Ih5TWAFBXCt6TIyZBIqJakaszal1q3Wi78Z7aMJmhGx2dzPzwaJ5oG8bk4tZZ6mMYaGOS6enWxdk10cwu0TnQwQyD6dNH8s7n4j7t6zG5-3lxe35ZXN_8ujo_uy7aSsi5aFthDIfaY8PQWyXaqlQOLbCqsUaUjhvvGQfusQLZKOudMa1nCFZJX2N5TH7svNOmGZzNo8_R9HqK3WDikw6m03_fjN2Dvg9bzVWVj8iC73tBDL83Ls166PIG-t6MLmySRgUMaymr8v-oVBVDwZjM6Ld_0HXYxDFvYqHqignOFuHpjmpjSCk6f5gbQS-J6iVR_ZJo7vj6-rsH_jnCDNA9sHQedFjmd_UF4xwy8mWHrNMc4otCcFHzvJE_mx6xbA</recordid><startdate>20160426</startdate><enddate>20160426</enddate><creator>Ryczko, Dimitri</creator><creator>Cone, Jackson J.</creator><creator>Alpert, Michael H.</creator><creator>Goetz, Laurent</creator><creator>Auclair, François</creator><creator>Dubé, Catherine</creator><creator>Parent, Martin</creator><creator>Roitman, Mitchell F.</creator><creator>Alford, Simon</creator><creator>Dubuc, Réjean</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>5PM</scope></search><sort><creationdate>20160426</creationdate><title>A descending dopamine pathway conserved from basal vertebrates to mammals</title><author>Ryczko, Dimitri ; Cone, Jackson J. ; Alpert, Michael H. ; Goetz, Laurent ; Auclair, François ; Dubé, Catherine ; Parent, Martin ; Roitman, Mitchell F. ; Alford, Simon ; Dubuc, Réjean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-cc6aa409f1b21fd86c538e1d025bda63e4aff2404f1507b8dfeaacf210d87f913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aged</topic><topic>Animals</topic><topic>Biological Evolution</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Brain Stem - physiology</topic><topic>Caudata</topic><topic>Corpus Striatum - physiology</topic><topic>Dopamine</topic><topic>Dopaminergic Neurons - physiology</topic><topic>Female</topic><topic>Humans</topic><topic>Lampreys - physiology</topic><topic>Locomotion - physiology</topic><topic>Male</topic><topic>Mammals</topic><topic>Motor Cortex - physiology</topic><topic>Neurons</topic><topic>Pedunculopontine Tegmental Nucleus - physiology</topic><topic>Petromyzontidae</topic><topic>PNAS Plus</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Rats, Transgenic</topic><topic>Rodents</topic><topic>Urodela - physiology</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryczko, Dimitri</creatorcontrib><creatorcontrib>Cone, Jackson J.</creatorcontrib><creatorcontrib>Alpert, Michael H.</creatorcontrib><creatorcontrib>Goetz, Laurent</creatorcontrib><creatorcontrib>Auclair, François</creatorcontrib><creatorcontrib>Dubé, Catherine</creatorcontrib><creatorcontrib>Parent, Martin</creatorcontrib><creatorcontrib>Roitman, Mitchell F.</creatorcontrib><creatorcontrib>Alford, Simon</creatorcontrib><creatorcontrib>Dubuc, Réjean</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryczko, Dimitri</au><au>Cone, Jackson J.</au><au>Alpert, Michael H.</au><au>Goetz, Laurent</au><au>Auclair, François</au><au>Dubé, Catherine</au><au>Parent, Martin</au><au>Roitman, Mitchell F.</au><au>Alford, Simon</au><au>Dubuc, Réjean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A descending dopamine pathway conserved from basal vertebrates to mammals</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-04-26</date><risdate>2016</risdate><volume>113</volume><issue>17</issue><spage>E2440</spage><epage>E2449</epage><pages>E2440-E2449</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Dopamine neurons are classically known to modulate locomotion indirectly through ascending projections to the basal ganglia that project down to brainstem locomotor networks. Their loss in Parkinson’s disease is devastating. In lampreys, we recently showed that brainstem networks also receive direct descending dopaminergic inputs that potentiate locomotor output. Here, we provide evidence that this descending dopaminergic pathway is conserved to higher vertebrates, including mammals. In salamanders, dopamine neurons projecting to the striatum or brainstem locomotor networks were partly intermingled. Stimulation of the dopaminergic region evoked dopamine release in brainstem locomotor networks and concurrent reticulospinal activity. In rats, some dopamine neurons projecting to the striatum also innervated the pedunculopontine nucleus, a known locomotor center, and stimulation of the dopaminergic region evoked pedunculopontine dopamine release in vivo. Finally, we found dopaminergic fibers in the human pedunculopontine nucleus. The conservation of a descending dopaminergic pathway across vertebrates warrants re-evaluating dopamine’s role in locomotion.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>27071118</pmid><doi>10.1073/pnas.1600684113</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2016-04, Vol.113 (17), p.E2440-E2449 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_1789526423 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Aged Animals Biological Evolution Biological Sciences Brain Brain Stem - physiology Caudata Corpus Striatum - physiology Dopamine Dopaminergic Neurons - physiology Female Humans Lampreys - physiology Locomotion - physiology Male Mammals Motor Cortex - physiology Neurons Pedunculopontine Tegmental Nucleus - physiology Petromyzontidae PNAS Plus Rats Rats, Sprague-Dawley Rats, Transgenic Rodents Urodela - physiology Vertebrates |
title | A descending dopamine pathway conserved from basal vertebrates to mammals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A41%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20descending%20dopamine%20pathway%20conserved%20from%20basal%20vertebrates%20to%20mammals&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ryczko,%20Dimitri&rft.date=2016-04-26&rft.volume=113&rft.issue=17&rft.spage=E2440&rft.epage=E2449&rft.pages=E2440-E2449&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1600684113&rft_dat=%3Cjstor_proqu%3E26469456%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1789526423&rft_id=info:pmid/27071118&rft_jstor_id=26469456&rfr_iscdi=true |