A descending dopamine pathway conserved from basal vertebrates to mammals

Dopamine neurons are classically known to modulate locomotion indirectly through ascending projections to the basal ganglia that project down to brainstem locomotor networks. Their loss in Parkinson’s disease is devastating. In lampreys, we recently showed that brainstem networks also receive direct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2016-04, Vol.113 (17), p.E2440-E2449
Hauptverfasser: Ryczko, Dimitri, Cone, Jackson J., Alpert, Michael H., Goetz, Laurent, Auclair, François, Dubé, Catherine, Parent, Martin, Roitman, Mitchell F., Alford, Simon, Dubuc, Réjean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E2449
container_issue 17
container_start_page E2440
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 113
creator Ryczko, Dimitri
Cone, Jackson J.
Alpert, Michael H.
Goetz, Laurent
Auclair, François
Dubé, Catherine
Parent, Martin
Roitman, Mitchell F.
Alford, Simon
Dubuc, Réjean
description Dopamine neurons are classically known to modulate locomotion indirectly through ascending projections to the basal ganglia that project down to brainstem locomotor networks. Their loss in Parkinson’s disease is devastating. In lampreys, we recently showed that brainstem networks also receive direct descending dopaminergic inputs that potentiate locomotor output. Here, we provide evidence that this descending dopaminergic pathway is conserved to higher vertebrates, including mammals. In salamanders, dopamine neurons projecting to the striatum or brainstem locomotor networks were partly intermingled. Stimulation of the dopaminergic region evoked dopamine release in brainstem locomotor networks and concurrent reticulospinal activity. In rats, some dopamine neurons projecting to the striatum also innervated the pedunculopontine nucleus, a known locomotor center, and stimulation of the dopaminergic region evoked pedunculopontine dopamine release in vivo. Finally, we found dopaminergic fibers in the human pedunculopontine nucleus. The conservation of a descending dopaminergic pathway across vertebrates warrants re-evaluating dopamine’s role in locomotion.
doi_str_mv 10.1073/pnas.1600684113
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1789526423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26469456</jstor_id><sourcerecordid>26469456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-cc6aa409f1b21fd86c538e1d025bda63e4aff2404f1507b8dfeaacf210d87f913</originalsourceid><addsrcrecordid>eNqFkUFv3CAQRlHVqtmmPffUCqmXXpzMYAz4UimK0iZSpFySM8IGEq9s44J3o_z7Yu1mk_ZSLnPgzWOYj5DPCCcIsjydRpNOUAAIxRHLN2SFUGMheA1vyQqAyUJxxo_Ih5TWAFBXCt6TIyZBIqJakaszal1q3Wi78Z7aMJmhGx2dzPzwaJ5oG8bk4tZZ6mMYaGOS6enWxdk10cwu0TnQwQyD6dNH8s7n4j7t6zG5-3lxe35ZXN_8ujo_uy7aSsi5aFthDIfaY8PQWyXaqlQOLbCqsUaUjhvvGQfusQLZKOudMa1nCFZJX2N5TH7svNOmGZzNo8_R9HqK3WDikw6m03_fjN2Dvg9bzVWVj8iC73tBDL83Ls166PIG-t6MLmySRgUMaymr8v-oVBVDwZjM6Ld_0HXYxDFvYqHqignOFuHpjmpjSCk6f5gbQS-J6iVR_ZJo7vj6-rsH_jnCDNA9sHQedFjmd_UF4xwy8mWHrNMc4otCcFHzvJE_mx6xbA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1789526423</pqid></control><display><type>article</type><title>A descending dopamine pathway conserved from basal vertebrates to mammals</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ryczko, Dimitri ; Cone, Jackson J. ; Alpert, Michael H. ; Goetz, Laurent ; Auclair, François ; Dubé, Catherine ; Parent, Martin ; Roitman, Mitchell F. ; Alford, Simon ; Dubuc, Réjean</creator><creatorcontrib>Ryczko, Dimitri ; Cone, Jackson J. ; Alpert, Michael H. ; Goetz, Laurent ; Auclair, François ; Dubé, Catherine ; Parent, Martin ; Roitman, Mitchell F. ; Alford, Simon ; Dubuc, Réjean</creatorcontrib><description>Dopamine neurons are classically known to modulate locomotion indirectly through ascending projections to the basal ganglia that project down to brainstem locomotor networks. Their loss in Parkinson’s disease is devastating. In lampreys, we recently showed that brainstem networks also receive direct descending dopaminergic inputs that potentiate locomotor output. Here, we provide evidence that this descending dopaminergic pathway is conserved to higher vertebrates, including mammals. In salamanders, dopamine neurons projecting to the striatum or brainstem locomotor networks were partly intermingled. Stimulation of the dopaminergic region evoked dopamine release in brainstem locomotor networks and concurrent reticulospinal activity. In rats, some dopamine neurons projecting to the striatum also innervated the pedunculopontine nucleus, a known locomotor center, and stimulation of the dopaminergic region evoked pedunculopontine dopamine release in vivo. Finally, we found dopaminergic fibers in the human pedunculopontine nucleus. The conservation of a descending dopaminergic pathway across vertebrates warrants re-evaluating dopamine’s role in locomotion.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1600684113</identifier><identifier>PMID: 27071118</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Aged ; Animals ; Biological Evolution ; Biological Sciences ; Brain ; Brain Stem - physiology ; Caudata ; Corpus Striatum - physiology ; Dopamine ; Dopaminergic Neurons - physiology ; Female ; Humans ; Lampreys - physiology ; Locomotion - physiology ; Male ; Mammals ; Motor Cortex - physiology ; Neurons ; Pedunculopontine Tegmental Nucleus - physiology ; Petromyzontidae ; PNAS Plus ; Rats ; Rats, Sprague-Dawley ; Rats, Transgenic ; Rodents ; Urodela - physiology ; Vertebrates</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-04, Vol.113 (17), p.E2440-E2449</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Apr 26, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-cc6aa409f1b21fd86c538e1d025bda63e4aff2404f1507b8dfeaacf210d87f913</citedby><cites>FETCH-LOGICAL-c567t-cc6aa409f1b21fd86c538e1d025bda63e4aff2404f1507b8dfeaacf210d87f913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/113/17.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26469456$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26469456$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27071118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ryczko, Dimitri</creatorcontrib><creatorcontrib>Cone, Jackson J.</creatorcontrib><creatorcontrib>Alpert, Michael H.</creatorcontrib><creatorcontrib>Goetz, Laurent</creatorcontrib><creatorcontrib>Auclair, François</creatorcontrib><creatorcontrib>Dubé, Catherine</creatorcontrib><creatorcontrib>Parent, Martin</creatorcontrib><creatorcontrib>Roitman, Mitchell F.</creatorcontrib><creatorcontrib>Alford, Simon</creatorcontrib><creatorcontrib>Dubuc, Réjean</creatorcontrib><title>A descending dopamine pathway conserved from basal vertebrates to mammals</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Dopamine neurons are classically known to modulate locomotion indirectly through ascending projections to the basal ganglia that project down to brainstem locomotor networks. Their loss in Parkinson’s disease is devastating. In lampreys, we recently showed that brainstem networks also receive direct descending dopaminergic inputs that potentiate locomotor output. Here, we provide evidence that this descending dopaminergic pathway is conserved to higher vertebrates, including mammals. In salamanders, dopamine neurons projecting to the striatum or brainstem locomotor networks were partly intermingled. Stimulation of the dopaminergic region evoked dopamine release in brainstem locomotor networks and concurrent reticulospinal activity. In rats, some dopamine neurons projecting to the striatum also innervated the pedunculopontine nucleus, a known locomotor center, and stimulation of the dopaminergic region evoked pedunculopontine dopamine release in vivo. Finally, we found dopaminergic fibers in the human pedunculopontine nucleus. The conservation of a descending dopaminergic pathway across vertebrates warrants re-evaluating dopamine’s role in locomotion.</description><subject>Aged</subject><subject>Animals</subject><subject>Biological Evolution</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Brain Stem - physiology</subject><subject>Caudata</subject><subject>Corpus Striatum - physiology</subject><subject>Dopamine</subject><subject>Dopaminergic Neurons - physiology</subject><subject>Female</subject><subject>Humans</subject><subject>Lampreys - physiology</subject><subject>Locomotion - physiology</subject><subject>Male</subject><subject>Mammals</subject><subject>Motor Cortex - physiology</subject><subject>Neurons</subject><subject>Pedunculopontine Tegmental Nucleus - physiology</subject><subject>Petromyzontidae</subject><subject>PNAS Plus</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Rats, Transgenic</subject><subject>Rodents</subject><subject>Urodela - physiology</subject><subject>Vertebrates</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv3CAQRlHVqtmmPffUCqmXXpzMYAz4UimK0iZSpFySM8IGEq9s44J3o_z7Yu1mk_ZSLnPgzWOYj5DPCCcIsjydRpNOUAAIxRHLN2SFUGMheA1vyQqAyUJxxo_Ih5TWAFBXCt6TIyZBIqJakaszal1q3Wi78Z7aMJmhGx2dzPzwaJ5oG8bk4tZZ6mMYaGOS6enWxdk10cwu0TnQwQyD6dNH8s7n4j7t6zG5-3lxe35ZXN_8ujo_uy7aSsi5aFthDIfaY8PQWyXaqlQOLbCqsUaUjhvvGQfusQLZKOudMa1nCFZJX2N5TH7svNOmGZzNo8_R9HqK3WDikw6m03_fjN2Dvg9bzVWVj8iC73tBDL83Ls166PIG-t6MLmySRgUMaymr8v-oVBVDwZjM6Ld_0HXYxDFvYqHqignOFuHpjmpjSCk6f5gbQS-J6iVR_ZJo7vj6-rsH_jnCDNA9sHQedFjmd_UF4xwy8mWHrNMc4otCcFHzvJE_mx6xbA</recordid><startdate>20160426</startdate><enddate>20160426</enddate><creator>Ryczko, Dimitri</creator><creator>Cone, Jackson J.</creator><creator>Alpert, Michael H.</creator><creator>Goetz, Laurent</creator><creator>Auclair, François</creator><creator>Dubé, Catherine</creator><creator>Parent, Martin</creator><creator>Roitman, Mitchell F.</creator><creator>Alford, Simon</creator><creator>Dubuc, Réjean</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>5PM</scope></search><sort><creationdate>20160426</creationdate><title>A descending dopamine pathway conserved from basal vertebrates to mammals</title><author>Ryczko, Dimitri ; Cone, Jackson J. ; Alpert, Michael H. ; Goetz, Laurent ; Auclair, François ; Dubé, Catherine ; Parent, Martin ; Roitman, Mitchell F. ; Alford, Simon ; Dubuc, Réjean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-cc6aa409f1b21fd86c538e1d025bda63e4aff2404f1507b8dfeaacf210d87f913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aged</topic><topic>Animals</topic><topic>Biological Evolution</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Brain Stem - physiology</topic><topic>Caudata</topic><topic>Corpus Striatum - physiology</topic><topic>Dopamine</topic><topic>Dopaminergic Neurons - physiology</topic><topic>Female</topic><topic>Humans</topic><topic>Lampreys - physiology</topic><topic>Locomotion - physiology</topic><topic>Male</topic><topic>Mammals</topic><topic>Motor Cortex - physiology</topic><topic>Neurons</topic><topic>Pedunculopontine Tegmental Nucleus - physiology</topic><topic>Petromyzontidae</topic><topic>PNAS Plus</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Rats, Transgenic</topic><topic>Rodents</topic><topic>Urodela - physiology</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryczko, Dimitri</creatorcontrib><creatorcontrib>Cone, Jackson J.</creatorcontrib><creatorcontrib>Alpert, Michael H.</creatorcontrib><creatorcontrib>Goetz, Laurent</creatorcontrib><creatorcontrib>Auclair, François</creatorcontrib><creatorcontrib>Dubé, Catherine</creatorcontrib><creatorcontrib>Parent, Martin</creatorcontrib><creatorcontrib>Roitman, Mitchell F.</creatorcontrib><creatorcontrib>Alford, Simon</creatorcontrib><creatorcontrib>Dubuc, Réjean</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryczko, Dimitri</au><au>Cone, Jackson J.</au><au>Alpert, Michael H.</au><au>Goetz, Laurent</au><au>Auclair, François</au><au>Dubé, Catherine</au><au>Parent, Martin</au><au>Roitman, Mitchell F.</au><au>Alford, Simon</au><au>Dubuc, Réjean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A descending dopamine pathway conserved from basal vertebrates to mammals</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-04-26</date><risdate>2016</risdate><volume>113</volume><issue>17</issue><spage>E2440</spage><epage>E2449</epage><pages>E2440-E2449</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Dopamine neurons are classically known to modulate locomotion indirectly through ascending projections to the basal ganglia that project down to brainstem locomotor networks. Their loss in Parkinson’s disease is devastating. In lampreys, we recently showed that brainstem networks also receive direct descending dopaminergic inputs that potentiate locomotor output. Here, we provide evidence that this descending dopaminergic pathway is conserved to higher vertebrates, including mammals. In salamanders, dopamine neurons projecting to the striatum or brainstem locomotor networks were partly intermingled. Stimulation of the dopaminergic region evoked dopamine release in brainstem locomotor networks and concurrent reticulospinal activity. In rats, some dopamine neurons projecting to the striatum also innervated the pedunculopontine nucleus, a known locomotor center, and stimulation of the dopaminergic region evoked pedunculopontine dopamine release in vivo. Finally, we found dopaminergic fibers in the human pedunculopontine nucleus. The conservation of a descending dopaminergic pathway across vertebrates warrants re-evaluating dopamine’s role in locomotion.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>27071118</pmid><doi>10.1073/pnas.1600684113</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2016-04, Vol.113 (17), p.E2440-E2449
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_1789526423
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Aged
Animals
Biological Evolution
Biological Sciences
Brain
Brain Stem - physiology
Caudata
Corpus Striatum - physiology
Dopamine
Dopaminergic Neurons - physiology
Female
Humans
Lampreys - physiology
Locomotion - physiology
Male
Mammals
Motor Cortex - physiology
Neurons
Pedunculopontine Tegmental Nucleus - physiology
Petromyzontidae
PNAS Plus
Rats
Rats, Sprague-Dawley
Rats, Transgenic
Rodents
Urodela - physiology
Vertebrates
title A descending dopamine pathway conserved from basal vertebrates to mammals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A41%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20descending%20dopamine%20pathway%20conserved%20from%20basal%20vertebrates%20to%20mammals&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ryczko,%20Dimitri&rft.date=2016-04-26&rft.volume=113&rft.issue=17&rft.spage=E2440&rft.epage=E2449&rft.pages=E2440-E2449&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1600684113&rft_dat=%3Cjstor_proqu%3E26469456%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1789526423&rft_id=info:pmid/27071118&rft_jstor_id=26469456&rfr_iscdi=true