Transport in Bulk Superconductors: A Practical Approach?

The characterization of the critical current density of bulk high-temperature superconductors is typically performed using magnetometry, which involves numerous assumptions, including, significantly, that [Formula Omitted] within the sample is uniform. Unfortunately, magnetometry is particularly cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2016-04, Vol.26 (3), p.1-4
Hauptverfasser: Rush, J. P., May-Miller, C. J., Palmer, K. G. B., Rutter, N. A., Dennis, A. R., Shi, Y.-H., Cardwell, D. A., Durrell, J. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue 3
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 26
creator Rush, J. P.
May-Miller, C. J.
Palmer, K. G. B.
Rutter, N. A.
Dennis, A. R.
Shi, Y.-H.
Cardwell, D. A.
Durrell, J. H.
description The characterization of the critical current density of bulk high-temperature superconductors is typically performed using magnetometry, which involves numerous assumptions, including, significantly, that [Formula Omitted] within the sample is uniform. Unfortunately, magnetometry is particularly challenging to apply where a local measurement of [Formula Omitted] across a feature, such as a grain boundary, is desired. Although transport measurements appear to be an attractive alternative to magnetization, it is extremely challenging to reduce the cross-sectional area of a bulk sample sufficiently to achieve a sufficiently low critical current that can be generated by a practical current source. In the work described here, we present a technique that enables transport measurements to be performed on sections of bulk superconductors. Metallographic techniques and resin reinforcement were used to create an I-shaped sample of bulk superconductor from a section of Gd-B-Cu-O containing 15 wt % Ag2O. The resulting superconducting track had a cross-sectional area of 0.44 mm2. The sample was found to support a critical current of 110 A using a field criterion in the narrowed track region of 1 [Formula Omitted]. We conclude, therefore, that it is possible to measure critical current densities in excess of [Formula Omitted] in sections of a bulk superconductor.
doi_str_mv 10.1109/TASC.2016.2537647
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1788387263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4053427501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1183-eb9ded421183a45637697d8cccfcc3bbd0893368c1adfae2e75309bde69ced9a3</originalsourceid><addsrcrecordid>eNotkE9LxDAUxIMouK5-AG8Fz615SdMmXqQu6x9YUNh6DulLil1rW5P24Le3Zff05sEwM_wIuQWaAFB1Xxb7TcIoZAkTPM_S_IysQAgZMwHifNZUQCwZ45fkKoQDpZDKVKyILL3pwtD7MWq66Glqv6P9NDiPfWcnHHsfHqIi-vAGxwZNGxXD4HuDX4_X5KI2bXA3p7smn8_bcvMa795f3jbFLkYAyWNXKetsypbHpCKbt6ncSkSsEXlVWSoV55lEMLY2jrlccKoq6zKFzirD1-TumDv3_k4ujPrQT76bKzXkUnKZs4zPLji60PcheFfrwTc_xv9poHoBpBdAegGkT4D4Pxs1WGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1788387263</pqid></control><display><type>article</type><title>Transport in Bulk Superconductors: A Practical Approach?</title><source>IEEE Electronic Library (IEL)</source><creator>Rush, J. P. ; May-Miller, C. J. ; Palmer, K. G. B. ; Rutter, N. A. ; Dennis, A. R. ; Shi, Y.-H. ; Cardwell, D. A. ; Durrell, J. H.</creator><creatorcontrib>Rush, J. P. ; May-Miller, C. J. ; Palmer, K. G. B. ; Rutter, N. A. ; Dennis, A. R. ; Shi, Y.-H. ; Cardwell, D. A. ; Durrell, J. H.</creatorcontrib><description>The characterization of the critical current density of bulk high-temperature superconductors is typically performed using magnetometry, which involves numerous assumptions, including, significantly, that [Formula Omitted] within the sample is uniform. Unfortunately, magnetometry is particularly challenging to apply where a local measurement of [Formula Omitted] across a feature, such as a grain boundary, is desired. Although transport measurements appear to be an attractive alternative to magnetization, it is extremely challenging to reduce the cross-sectional area of a bulk sample sufficiently to achieve a sufficiently low critical current that can be generated by a practical current source. In the work described here, we present a technique that enables transport measurements to be performed on sections of bulk superconductors. Metallographic techniques and resin reinforcement were used to create an I-shaped sample of bulk superconductor from a section of Gd-B-Cu-O containing 15 wt % Ag2O. The resulting superconducting track had a cross-sectional area of 0.44 mm2. The sample was found to support a critical current of 110 A using a field criterion in the narrowed track region of 1 [Formula Omitted]. We conclude, therefore, that it is possible to measure critical current densities in excess of [Formula Omitted] in sections of a bulk superconductor.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2016.2537647</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Superconductors</subject><ispartof>IEEE transactions on applied superconductivity, 2016-04, Vol.26 (3), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1183-eb9ded421183a45637697d8cccfcc3bbd0893368c1adfae2e75309bde69ced9a3</citedby><cites>FETCH-LOGICAL-c1183-eb9ded421183a45637697d8cccfcc3bbd0893368c1adfae2e75309bde69ced9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Rush, J. P.</creatorcontrib><creatorcontrib>May-Miller, C. J.</creatorcontrib><creatorcontrib>Palmer, K. G. B.</creatorcontrib><creatorcontrib>Rutter, N. A.</creatorcontrib><creatorcontrib>Dennis, A. R.</creatorcontrib><creatorcontrib>Shi, Y.-H.</creatorcontrib><creatorcontrib>Cardwell, D. A.</creatorcontrib><creatorcontrib>Durrell, J. H.</creatorcontrib><title>Transport in Bulk Superconductors: A Practical Approach?</title><title>IEEE transactions on applied superconductivity</title><description>The characterization of the critical current density of bulk high-temperature superconductors is typically performed using magnetometry, which involves numerous assumptions, including, significantly, that [Formula Omitted] within the sample is uniform. Unfortunately, magnetometry is particularly challenging to apply where a local measurement of [Formula Omitted] across a feature, such as a grain boundary, is desired. Although transport measurements appear to be an attractive alternative to magnetization, it is extremely challenging to reduce the cross-sectional area of a bulk sample sufficiently to achieve a sufficiently low critical current that can be generated by a practical current source. In the work described here, we present a technique that enables transport measurements to be performed on sections of bulk superconductors. Metallographic techniques and resin reinforcement were used to create an I-shaped sample of bulk superconductor from a section of Gd-B-Cu-O containing 15 wt % Ag2O. The resulting superconducting track had a cross-sectional area of 0.44 mm2. The sample was found to support a critical current of 110 A using a field criterion in the narrowed track region of 1 [Formula Omitted]. We conclude, therefore, that it is possible to measure critical current densities in excess of [Formula Omitted] in sections of a bulk superconductor.</description><subject>Superconductors</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNotkE9LxDAUxIMouK5-AG8Fz615SdMmXqQu6x9YUNh6DulLil1rW5P24Le3Zff05sEwM_wIuQWaAFB1Xxb7TcIoZAkTPM_S_IysQAgZMwHifNZUQCwZ45fkKoQDpZDKVKyILL3pwtD7MWq66Glqv6P9NDiPfWcnHHsfHqIi-vAGxwZNGxXD4HuDX4_X5KI2bXA3p7smn8_bcvMa795f3jbFLkYAyWNXKetsypbHpCKbt6ncSkSsEXlVWSoV55lEMLY2jrlccKoq6zKFzirD1-TumDv3_k4ujPrQT76bKzXkUnKZs4zPLji60PcheFfrwTc_xv9poHoBpBdAegGkT4D4Pxs1WGw</recordid><startdate>201604</startdate><enddate>201604</enddate><creator>Rush, J. P.</creator><creator>May-Miller, C. J.</creator><creator>Palmer, K. G. B.</creator><creator>Rutter, N. A.</creator><creator>Dennis, A. R.</creator><creator>Shi, Y.-H.</creator><creator>Cardwell, D. A.</creator><creator>Durrell, J. H.</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201604</creationdate><title>Transport in Bulk Superconductors: A Practical Approach?</title><author>Rush, J. P. ; May-Miller, C. J. ; Palmer, K. G. B. ; Rutter, N. A. ; Dennis, A. R. ; Shi, Y.-H. ; Cardwell, D. A. ; Durrell, J. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1183-eb9ded421183a45637697d8cccfcc3bbd0893368c1adfae2e75309bde69ced9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Superconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rush, J. P.</creatorcontrib><creatorcontrib>May-Miller, C. J.</creatorcontrib><creatorcontrib>Palmer, K. G. B.</creatorcontrib><creatorcontrib>Rutter, N. A.</creatorcontrib><creatorcontrib>Dennis, A. R.</creatorcontrib><creatorcontrib>Shi, Y.-H.</creatorcontrib><creatorcontrib>Cardwell, D. A.</creatorcontrib><creatorcontrib>Durrell, J. H.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rush, J. P.</au><au>May-Miller, C. J.</au><au>Palmer, K. G. B.</au><au>Rutter, N. A.</au><au>Dennis, A. R.</au><au>Shi, Y.-H.</au><au>Cardwell, D. A.</au><au>Durrell, J. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport in Bulk Superconductors: A Practical Approach?</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><date>2016-04</date><risdate>2016</risdate><volume>26</volume><issue>3</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><abstract>The characterization of the critical current density of bulk high-temperature superconductors is typically performed using magnetometry, which involves numerous assumptions, including, significantly, that [Formula Omitted] within the sample is uniform. Unfortunately, magnetometry is particularly challenging to apply where a local measurement of [Formula Omitted] across a feature, such as a grain boundary, is desired. Although transport measurements appear to be an attractive alternative to magnetization, it is extremely challenging to reduce the cross-sectional area of a bulk sample sufficiently to achieve a sufficiently low critical current that can be generated by a practical current source. In the work described here, we present a technique that enables transport measurements to be performed on sections of bulk superconductors. Metallographic techniques and resin reinforcement were used to create an I-shaped sample of bulk superconductor from a section of Gd-B-Cu-O containing 15 wt % Ag2O. The resulting superconducting track had a cross-sectional area of 0.44 mm2. The sample was found to support a critical current of 110 A using a field criterion in the narrowed track region of 1 [Formula Omitted]. We conclude, therefore, that it is possible to measure critical current densities in excess of [Formula Omitted] in sections of a bulk superconductor.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TASC.2016.2537647</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2016-04, Vol.26 (3), p.1-4
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_journals_1788387263
source IEEE Electronic Library (IEL)
subjects Superconductors
title Transport in Bulk Superconductors: A Practical Approach?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20in%20Bulk%20Superconductors:%20A%20Practical%20Approach?&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Rush,%20J.%20P.&rft.date=2016-04&rft.volume=26&rft.issue=3&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1051-8223&rft.eissn=1558-2515&rft_id=info:doi/10.1109/TASC.2016.2537647&rft_dat=%3Cproquest_cross%3E4053427501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1788387263&rft_id=info:pmid/&rfr_iscdi=true