Supervised Band Selection Using Local Spatial Information for Hyperspectral Image

In order to alleviate the subsequent computation burden and storage requirement, band selection has been widely adopted to reduce the dimensionality of hyperspectral images, and the current methods mainly consist of the supervised and the unsupervised. Although these supervised methods have better p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2016-03, Vol.13 (3), p.329-333
Hauptverfasser: Cao, Xianghai, Xiong, Tao, Jiao, Licheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 333
container_issue 3
container_start_page 329
container_title IEEE geoscience and remote sensing letters
container_volume 13
creator Cao, Xianghai
Xiong, Tao
Jiao, Licheng
description In order to alleviate the subsequent computation burden and storage requirement, band selection has been widely adopted to reduce the dimensionality of hyperspectral images, and the current methods mainly consist of the supervised and the unsupervised. Although these supervised methods have better performance, those unsupervised methods dominate the band selection field. In this letter, based on the unique properties of hyperspectral images, we propose a very simple but effective supervised band selection algorithm based on the local spatial information of the hyperspectral image and wrapper method. By using both the information of labeled and unlabeled pixels of the hyperspectral image, our proposed algorithm consistently outperforms the classical wrapper method. We use five widely used real hyperspectral data to demonstrate the effectiveness of our proposed algorithms. We also analyze the relationship between our band selection algorithm and the well-known Markov random field classifier.
doi_str_mv 10.1109/LGRS.2015.2511186
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1787280034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7378270</ieee_id><sourcerecordid>4048052161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-f82f778f090cce95711b293874d1bce48058b0f1c7d3127a7fec119fc158533e3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKc_QHwp-NyZmzQmfdSh26AgWge-hSy9GR1bW5NO2L83dcOnc-Cec-_lI-QW6ASA5g_F7KOcMApiwgQAqMczMgIhVEqFhPPBZyIVufq6JFchbChlmVJyRN7LfYf-pw5YJc-mqZISt2j7um2SZaibdVK01myTsjN9HXXRuNbvzN88umR-iO3QxYYfpjuzxmty4cw24M1Jx2T5-vI5nafF22wxfSpSy0Xep04xJ6VyNKfWYh6_hBXLuZJZBSuLmaJCragDKysOTBrp0ALkzoJQgnPkY3J_3Nv59nuPodebdu-beFKDVJIpSnkWU3BMWd-G4NHpztc74w8aqB7I6YGcHsjpE7nYuTt2akT8z0suFZOU_wK0vGm3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787280034</pqid></control><display><type>article</type><title>Supervised Band Selection Using Local Spatial Information for Hyperspectral Image</title><source>IEEE Electronic Library (IEL)</source><creator>Cao, Xianghai ; Xiong, Tao ; Jiao, Licheng</creator><creatorcontrib>Cao, Xianghai ; Xiong, Tao ; Jiao, Licheng</creatorcontrib><description>In order to alleviate the subsequent computation burden and storage requirement, band selection has been widely adopted to reduce the dimensionality of hyperspectral images, and the current methods mainly consist of the supervised and the unsupervised. Although these supervised methods have better performance, those unsupervised methods dominate the band selection field. In this letter, based on the unique properties of hyperspectral images, we propose a very simple but effective supervised band selection algorithm based on the local spatial information of the hyperspectral image and wrapper method. By using both the information of labeled and unlabeled pixels of the hyperspectral image, our proposed algorithm consistently outperforms the classical wrapper method. We use five widely used real hyperspectral data to demonstrate the effectiveness of our proposed algorithms. We also analyze the relationship between our band selection algorithm and the well-known Markov random field classifier.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2015.2511186</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Estimation ; Feature extraction ; Hyperspectral image ; Hyperspectral imaging ; local spatial information ; Methods ; Reliability ; supervised band selection ; Support vector machines ; wrapper method</subject><ispartof>IEEE geoscience and remote sensing letters, 2016-03, Vol.13 (3), p.329-333</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-f82f778f090cce95711b293874d1bce48058b0f1c7d3127a7fec119fc158533e3</citedby><cites>FETCH-LOGICAL-c359t-f82f778f090cce95711b293874d1bce48058b0f1c7d3127a7fec119fc158533e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7378270$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7378270$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cao, Xianghai</creatorcontrib><creatorcontrib>Xiong, Tao</creatorcontrib><creatorcontrib>Jiao, Licheng</creatorcontrib><title>Supervised Band Selection Using Local Spatial Information for Hyperspectral Image</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>In order to alleviate the subsequent computation burden and storage requirement, band selection has been widely adopted to reduce the dimensionality of hyperspectral images, and the current methods mainly consist of the supervised and the unsupervised. Although these supervised methods have better performance, those unsupervised methods dominate the band selection field. In this letter, based on the unique properties of hyperspectral images, we propose a very simple but effective supervised band selection algorithm based on the local spatial information of the hyperspectral image and wrapper method. By using both the information of labeled and unlabeled pixels of the hyperspectral image, our proposed algorithm consistently outperforms the classical wrapper method. We use five widely used real hyperspectral data to demonstrate the effectiveness of our proposed algorithms. We also analyze the relationship between our band selection algorithm and the well-known Markov random field classifier.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>Hyperspectral image</subject><subject>Hyperspectral imaging</subject><subject>local spatial information</subject><subject>Methods</subject><subject>Reliability</subject><subject>supervised band selection</subject><subject>Support vector machines</subject><subject>wrapper method</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOKc_QHwp-NyZmzQmfdSh26AgWge-hSy9GR1bW5NO2L83dcOnc-Cec-_lI-QW6ASA5g_F7KOcMApiwgQAqMczMgIhVEqFhPPBZyIVufq6JFchbChlmVJyRN7LfYf-pw5YJc-mqZISt2j7um2SZaibdVK01myTsjN9HXXRuNbvzN88umR-iO3QxYYfpjuzxmty4cw24M1Jx2T5-vI5nafF22wxfSpSy0Xep04xJ6VyNKfWYh6_hBXLuZJZBSuLmaJCragDKysOTBrp0ALkzoJQgnPkY3J_3Nv59nuPodebdu-beFKDVJIpSnkWU3BMWd-G4NHpztc74w8aqB7I6YGcHsjpE7nYuTt2akT8z0suFZOU_wK0vGm3</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Cao, Xianghai</creator><creator>Xiong, Tao</creator><creator>Jiao, Licheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160301</creationdate><title>Supervised Band Selection Using Local Spatial Information for Hyperspectral Image</title><author>Cao, Xianghai ; Xiong, Tao ; Jiao, Licheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-f82f778f090cce95711b293874d1bce48058b0f1c7d3127a7fec119fc158533e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>Hyperspectral image</topic><topic>Hyperspectral imaging</topic><topic>local spatial information</topic><topic>Methods</topic><topic>Reliability</topic><topic>supervised band selection</topic><topic>Support vector machines</topic><topic>wrapper method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Xianghai</creatorcontrib><creatorcontrib>Xiong, Tao</creatorcontrib><creatorcontrib>Jiao, Licheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cao, Xianghai</au><au>Xiong, Tao</au><au>Jiao, Licheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supervised Band Selection Using Local Spatial Information for Hyperspectral Image</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>13</volume><issue>3</issue><spage>329</spage><epage>333</epage><pages>329-333</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>In order to alleviate the subsequent computation burden and storage requirement, band selection has been widely adopted to reduce the dimensionality of hyperspectral images, and the current methods mainly consist of the supervised and the unsupervised. Although these supervised methods have better performance, those unsupervised methods dominate the band selection field. In this letter, based on the unique properties of hyperspectral images, we propose a very simple but effective supervised band selection algorithm based on the local spatial information of the hyperspectral image and wrapper method. By using both the information of labeled and unlabeled pixels of the hyperspectral image, our proposed algorithm consistently outperforms the classical wrapper method. We use five widely used real hyperspectral data to demonstrate the effectiveness of our proposed algorithms. We also analyze the relationship between our band selection algorithm and the well-known Markov random field classifier.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2015.2511186</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2016-03, Vol.13 (3), p.329-333
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_journals_1787280034
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Estimation
Feature extraction
Hyperspectral image
Hyperspectral imaging
local spatial information
Methods
Reliability
supervised band selection
Support vector machines
wrapper method
title Supervised Band Selection Using Local Spatial Information for Hyperspectral Image
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T09%3A27%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supervised%20Band%20Selection%20Using%20Local%20Spatial%20Information%20for%20Hyperspectral%20Image&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Cao,%20Xianghai&rft.date=2016-03-01&rft.volume=13&rft.issue=3&rft.spage=329&rft.epage=333&rft.pages=329-333&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2015.2511186&rft_dat=%3Cproquest_RIE%3E4048052161%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787280034&rft_id=info:pmid/&rft_ieee_id=7378270&rfr_iscdi=true