Supervised Band Selection Using Local Spatial Information for Hyperspectral Image
In order to alleviate the subsequent computation burden and storage requirement, band selection has been widely adopted to reduce the dimensionality of hyperspectral images, and the current methods mainly consist of the supervised and the unsupervised. Although these supervised methods have better p...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2016-03, Vol.13 (3), p.329-333 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 333 |
---|---|
container_issue | 3 |
container_start_page | 329 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 13 |
creator | Cao, Xianghai Xiong, Tao Jiao, Licheng |
description | In order to alleviate the subsequent computation burden and storage requirement, band selection has been widely adopted to reduce the dimensionality of hyperspectral images, and the current methods mainly consist of the supervised and the unsupervised. Although these supervised methods have better performance, those unsupervised methods dominate the band selection field. In this letter, based on the unique properties of hyperspectral images, we propose a very simple but effective supervised band selection algorithm based on the local spatial information of the hyperspectral image and wrapper method. By using both the information of labeled and unlabeled pixels of the hyperspectral image, our proposed algorithm consistently outperforms the classical wrapper method. We use five widely used real hyperspectral data to demonstrate the effectiveness of our proposed algorithms. We also analyze the relationship between our band selection algorithm and the well-known Markov random field classifier. |
doi_str_mv | 10.1109/LGRS.2015.2511186 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1787280034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7378270</ieee_id><sourcerecordid>4048052161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-f82f778f090cce95711b293874d1bce48058b0f1c7d3127a7fec119fc158533e3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKc_QHwp-NyZmzQmfdSh26AgWge-hSy9GR1bW5NO2L83dcOnc-Cec-_lI-QW6ASA5g_F7KOcMApiwgQAqMczMgIhVEqFhPPBZyIVufq6JFchbChlmVJyRN7LfYf-pw5YJc-mqZISt2j7um2SZaibdVK01myTsjN9HXXRuNbvzN88umR-iO3QxYYfpjuzxmty4cw24M1Jx2T5-vI5nafF22wxfSpSy0Xep04xJ6VyNKfWYh6_hBXLuZJZBSuLmaJCragDKysOTBrp0ALkzoJQgnPkY3J_3Nv59nuPodebdu-beFKDVJIpSnkWU3BMWd-G4NHpztc74w8aqB7I6YGcHsjpE7nYuTt2akT8z0suFZOU_wK0vGm3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787280034</pqid></control><display><type>article</type><title>Supervised Band Selection Using Local Spatial Information for Hyperspectral Image</title><source>IEEE Electronic Library (IEL)</source><creator>Cao, Xianghai ; Xiong, Tao ; Jiao, Licheng</creator><creatorcontrib>Cao, Xianghai ; Xiong, Tao ; Jiao, Licheng</creatorcontrib><description>In order to alleviate the subsequent computation burden and storage requirement, band selection has been widely adopted to reduce the dimensionality of hyperspectral images, and the current methods mainly consist of the supervised and the unsupervised. Although these supervised methods have better performance, those unsupervised methods dominate the band selection field. In this letter, based on the unique properties of hyperspectral images, we propose a very simple but effective supervised band selection algorithm based on the local spatial information of the hyperspectral image and wrapper method. By using both the information of labeled and unlabeled pixels of the hyperspectral image, our proposed algorithm consistently outperforms the classical wrapper method. We use five widely used real hyperspectral data to demonstrate the effectiveness of our proposed algorithms. We also analyze the relationship between our band selection algorithm and the well-known Markov random field classifier.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2015.2511186</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Estimation ; Feature extraction ; Hyperspectral image ; Hyperspectral imaging ; local spatial information ; Methods ; Reliability ; supervised band selection ; Support vector machines ; wrapper method</subject><ispartof>IEEE geoscience and remote sensing letters, 2016-03, Vol.13 (3), p.329-333</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-f82f778f090cce95711b293874d1bce48058b0f1c7d3127a7fec119fc158533e3</citedby><cites>FETCH-LOGICAL-c359t-f82f778f090cce95711b293874d1bce48058b0f1c7d3127a7fec119fc158533e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7378270$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7378270$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cao, Xianghai</creatorcontrib><creatorcontrib>Xiong, Tao</creatorcontrib><creatorcontrib>Jiao, Licheng</creatorcontrib><title>Supervised Band Selection Using Local Spatial Information for Hyperspectral Image</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>In order to alleviate the subsequent computation burden and storage requirement, band selection has been widely adopted to reduce the dimensionality of hyperspectral images, and the current methods mainly consist of the supervised and the unsupervised. Although these supervised methods have better performance, those unsupervised methods dominate the band selection field. In this letter, based on the unique properties of hyperspectral images, we propose a very simple but effective supervised band selection algorithm based on the local spatial information of the hyperspectral image and wrapper method. By using both the information of labeled and unlabeled pixels of the hyperspectral image, our proposed algorithm consistently outperforms the classical wrapper method. We use five widely used real hyperspectral data to demonstrate the effectiveness of our proposed algorithms. We also analyze the relationship between our band selection algorithm and the well-known Markov random field classifier.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>Hyperspectral image</subject><subject>Hyperspectral imaging</subject><subject>local spatial information</subject><subject>Methods</subject><subject>Reliability</subject><subject>supervised band selection</subject><subject>Support vector machines</subject><subject>wrapper method</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOKc_QHwp-NyZmzQmfdSh26AgWge-hSy9GR1bW5NO2L83dcOnc-Cec-_lI-QW6ASA5g_F7KOcMApiwgQAqMczMgIhVEqFhPPBZyIVufq6JFchbChlmVJyRN7LfYf-pw5YJc-mqZISt2j7um2SZaibdVK01myTsjN9HXXRuNbvzN88umR-iO3QxYYfpjuzxmty4cw24M1Jx2T5-vI5nafF22wxfSpSy0Xep04xJ6VyNKfWYh6_hBXLuZJZBSuLmaJCragDKysOTBrp0ALkzoJQgnPkY3J_3Nv59nuPodebdu-beFKDVJIpSnkWU3BMWd-G4NHpztc74w8aqB7I6YGcHsjpE7nYuTt2akT8z0suFZOU_wK0vGm3</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Cao, Xianghai</creator><creator>Xiong, Tao</creator><creator>Jiao, Licheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160301</creationdate><title>Supervised Band Selection Using Local Spatial Information for Hyperspectral Image</title><author>Cao, Xianghai ; Xiong, Tao ; Jiao, Licheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-f82f778f090cce95711b293874d1bce48058b0f1c7d3127a7fec119fc158533e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>Hyperspectral image</topic><topic>Hyperspectral imaging</topic><topic>local spatial information</topic><topic>Methods</topic><topic>Reliability</topic><topic>supervised band selection</topic><topic>Support vector machines</topic><topic>wrapper method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Xianghai</creatorcontrib><creatorcontrib>Xiong, Tao</creatorcontrib><creatorcontrib>Jiao, Licheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cao, Xianghai</au><au>Xiong, Tao</au><au>Jiao, Licheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supervised Band Selection Using Local Spatial Information for Hyperspectral Image</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>13</volume><issue>3</issue><spage>329</spage><epage>333</epage><pages>329-333</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>In order to alleviate the subsequent computation burden and storage requirement, band selection has been widely adopted to reduce the dimensionality of hyperspectral images, and the current methods mainly consist of the supervised and the unsupervised. Although these supervised methods have better performance, those unsupervised methods dominate the band selection field. In this letter, based on the unique properties of hyperspectral images, we propose a very simple but effective supervised band selection algorithm based on the local spatial information of the hyperspectral image and wrapper method. By using both the information of labeled and unlabeled pixels of the hyperspectral image, our proposed algorithm consistently outperforms the classical wrapper method. We use five widely used real hyperspectral data to demonstrate the effectiveness of our proposed algorithms. We also analyze the relationship between our band selection algorithm and the well-known Markov random field classifier.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2015.2511186</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2016-03, Vol.13 (3), p.329-333 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_proquest_journals_1787280034 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Algorithms Estimation Feature extraction Hyperspectral image Hyperspectral imaging local spatial information Methods Reliability supervised band selection Support vector machines wrapper method |
title | Supervised Band Selection Using Local Spatial Information for Hyperspectral Image |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T09%3A27%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supervised%20Band%20Selection%20Using%20Local%20Spatial%20Information%20for%20Hyperspectral%20Image&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Cao,%20Xianghai&rft.date=2016-03-01&rft.volume=13&rft.issue=3&rft.spage=329&rft.epage=333&rft.pages=329-333&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2015.2511186&rft_dat=%3Cproquest_RIE%3E4048052161%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787280034&rft_id=info:pmid/&rft_ieee_id=7378270&rfr_iscdi=true |