Classification of Hyperspectral Remote Sensing Image Using Hierarchical Local-Receptive-Field-Based Extreme Learning Machine

This letter proposes a novel classification approach for a hyperspectral image (HSI) using a hierarchical local-receptive-field (LRF)-based extreme learning machine (ELM). As a fast and accurate pattern classification algorithm, ELM has been applied in numerous fields, including the HSI classificati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2016-03, Vol.13 (3), p.434-438
Hauptverfasser: Lv, Qi, Niu, Xin, Dou, Yong, Xu, Jiaqing, Lei, Yuanwu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 438
container_issue 3
container_start_page 434
container_title IEEE geoscience and remote sensing letters
container_volume 13
creator Lv, Qi
Niu, Xin
Dou, Yong
Xu, Jiaqing
Lei, Yuanwu
description This letter proposes a novel classification approach for a hyperspectral image (HSI) using a hierarchical local-receptive-field (LRF)-based extreme learning machine (ELM). As a fast and accurate pattern classification algorithm, ELM has been applied in numerous fields, including the HSI classification. The LRF concept originates from research in neuroscience. Considering the local correlations of spectral features, it is promising to improve the performance of HSI classification by introducing the LRFs. Recent research on deep learning has shown that hierarchical architectures with more layers can potentially extract abstract representation and invariant features for better classification performance. Therefore, we further extend the LRF-based ELM method to a hierarchical model for HSI classification. Experimental results on two widely used real hyperspectral data sets confirm the effectiveness of the proposed HSI classification approach.
doi_str_mv 10.1109/LGRS.2016.2517178
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1787279960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7403893</ieee_id><sourcerecordid>4048052101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-8171b701af276515e38bafa638033eb3fbc245d1b5ceae06a3b0680263c72d5b3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhoMoWKs_QLwseE7dj2x2c9RiPyAitBa8hc1mUrfky91ULPjj3djiZWYO7zPDPEFwS_CEEJw8pPPVekIxiSeUE0GEPAtGhHMZYi7I-TBHPOSJfL8MrpzbYUwjKcUo-JlWyjlTGq160zaoLdHi0IF1HejeqgqtoG57QGtonGm2aFmrLaDN37wwYJXVH56tUNr6Gq5AQ9ebLwhnBqoifFIOCvT83VuoAaWgbDOQL8pTDVwHF6WqHNyc-jjYzJ7fposwfZ0vp49pqFnM-lD6h3KBiSqpiDnhwGSuShUziRmDnJW5phEvSM41KMCxYjmOJaYx04IWPGfj4P64t7Pt5x5cn-3avW38ycybElQkSYx9ihxT2rbOWSizzppa2UNGcDZIzgbJ2SA5O0n2zN2RMQDwnxcRZjJh7BdDCXm_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787279960</pqid></control><display><type>article</type><title>Classification of Hyperspectral Remote Sensing Image Using Hierarchical Local-Receptive-Field-Based Extreme Learning Machine</title><source>IEEE Electronic Library (IEL)</source><creator>Lv, Qi ; Niu, Xin ; Dou, Yong ; Xu, Jiaqing ; Lei, Yuanwu</creator><creatorcontrib>Lv, Qi ; Niu, Xin ; Dou, Yong ; Xu, Jiaqing ; Lei, Yuanwu</creatorcontrib><description>This letter proposes a novel classification approach for a hyperspectral image (HSI) using a hierarchical local-receptive-field (LRF)-based extreme learning machine (ELM). As a fast and accurate pattern classification algorithm, ELM has been applied in numerous fields, including the HSI classification. The LRF concept originates from research in neuroscience. Considering the local correlations of spectral features, it is promising to improve the performance of HSI classification by introducing the LRFs. Recent research on deep learning has shown that hierarchical architectures with more layers can potentially extract abstract representation and invariant features for better classification performance. Therefore, we further extend the LRF-based ELM method to a hierarchical model for HSI classification. Experimental results on two widely used real hyperspectral data sets confirm the effectiveness of the proposed HSI classification approach.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2016.2517178</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Convolution ; Deep learning ; extreme learning machine (ELM) ; Feature extraction ; hyperspectral image (HSI) classification ; Hyperspectral imaging ; local receptive field (LRF) ; Neurons ; Training</subject><ispartof>IEEE geoscience and remote sensing letters, 2016-03, Vol.13 (3), p.434-438</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-8171b701af276515e38bafa638033eb3fbc245d1b5ceae06a3b0680263c72d5b3</citedby><cites>FETCH-LOGICAL-c363t-8171b701af276515e38bafa638033eb3fbc245d1b5ceae06a3b0680263c72d5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7403893$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7403893$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lv, Qi</creatorcontrib><creatorcontrib>Niu, Xin</creatorcontrib><creatorcontrib>Dou, Yong</creatorcontrib><creatorcontrib>Xu, Jiaqing</creatorcontrib><creatorcontrib>Lei, Yuanwu</creatorcontrib><title>Classification of Hyperspectral Remote Sensing Image Using Hierarchical Local-Receptive-Field-Based Extreme Learning Machine</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>This letter proposes a novel classification approach for a hyperspectral image (HSI) using a hierarchical local-receptive-field (LRF)-based extreme learning machine (ELM). As a fast and accurate pattern classification algorithm, ELM has been applied in numerous fields, including the HSI classification. The LRF concept originates from research in neuroscience. Considering the local correlations of spectral features, it is promising to improve the performance of HSI classification by introducing the LRFs. Recent research on deep learning has shown that hierarchical architectures with more layers can potentially extract abstract representation and invariant features for better classification performance. Therefore, we further extend the LRF-based ELM method to a hierarchical model for HSI classification. Experimental results on two widely used real hyperspectral data sets confirm the effectiveness of the proposed HSI classification approach.</description><subject>Convolution</subject><subject>Deep learning</subject><subject>extreme learning machine (ELM)</subject><subject>Feature extraction</subject><subject>hyperspectral image (HSI) classification</subject><subject>Hyperspectral imaging</subject><subject>local receptive field (LRF)</subject><subject>Neurons</subject><subject>Training</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhoMoWKs_QLwseE7dj2x2c9RiPyAitBa8hc1mUrfky91ULPjj3djiZWYO7zPDPEFwS_CEEJw8pPPVekIxiSeUE0GEPAtGhHMZYi7I-TBHPOSJfL8MrpzbYUwjKcUo-JlWyjlTGq160zaoLdHi0IF1HejeqgqtoG57QGtonGm2aFmrLaDN37wwYJXVH56tUNr6Gq5AQ9ebLwhnBqoifFIOCvT83VuoAaWgbDOQL8pTDVwHF6WqHNyc-jjYzJ7fposwfZ0vp49pqFnM-lD6h3KBiSqpiDnhwGSuShUziRmDnJW5phEvSM41KMCxYjmOJaYx04IWPGfj4P64t7Pt5x5cn-3avW38ycybElQkSYx9ihxT2rbOWSizzppa2UNGcDZIzgbJ2SA5O0n2zN2RMQDwnxcRZjJh7BdDCXm_</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Lv, Qi</creator><creator>Niu, Xin</creator><creator>Dou, Yong</creator><creator>Xu, Jiaqing</creator><creator>Lei, Yuanwu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160301</creationdate><title>Classification of Hyperspectral Remote Sensing Image Using Hierarchical Local-Receptive-Field-Based Extreme Learning Machine</title><author>Lv, Qi ; Niu, Xin ; Dou, Yong ; Xu, Jiaqing ; Lei, Yuanwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-8171b701af276515e38bafa638033eb3fbc245d1b5ceae06a3b0680263c72d5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Convolution</topic><topic>Deep learning</topic><topic>extreme learning machine (ELM)</topic><topic>Feature extraction</topic><topic>hyperspectral image (HSI) classification</topic><topic>Hyperspectral imaging</topic><topic>local receptive field (LRF)</topic><topic>Neurons</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Qi</creatorcontrib><creatorcontrib>Niu, Xin</creatorcontrib><creatorcontrib>Dou, Yong</creatorcontrib><creatorcontrib>Xu, Jiaqing</creatorcontrib><creatorcontrib>Lei, Yuanwu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lv, Qi</au><au>Niu, Xin</au><au>Dou, Yong</au><au>Xu, Jiaqing</au><au>Lei, Yuanwu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of Hyperspectral Remote Sensing Image Using Hierarchical Local-Receptive-Field-Based Extreme Learning Machine</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>13</volume><issue>3</issue><spage>434</spage><epage>438</epage><pages>434-438</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>This letter proposes a novel classification approach for a hyperspectral image (HSI) using a hierarchical local-receptive-field (LRF)-based extreme learning machine (ELM). As a fast and accurate pattern classification algorithm, ELM has been applied in numerous fields, including the HSI classification. The LRF concept originates from research in neuroscience. Considering the local correlations of spectral features, it is promising to improve the performance of HSI classification by introducing the LRFs. Recent research on deep learning has shown that hierarchical architectures with more layers can potentially extract abstract representation and invariant features for better classification performance. Therefore, we further extend the LRF-based ELM method to a hierarchical model for HSI classification. Experimental results on two widely used real hyperspectral data sets confirm the effectiveness of the proposed HSI classification approach.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2016.2517178</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2016-03, Vol.13 (3), p.434-438
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_journals_1787279960
source IEEE Electronic Library (IEL)
subjects Convolution
Deep learning
extreme learning machine (ELM)
Feature extraction
hyperspectral image (HSI) classification
Hyperspectral imaging
local receptive field (LRF)
Neurons
Training
title Classification of Hyperspectral Remote Sensing Image Using Hierarchical Local-Receptive-Field-Based Extreme Learning Machine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A58%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20Hyperspectral%20Remote%20Sensing%20Image%20Using%20Hierarchical%20Local-Receptive-Field-Based%20Extreme%20Learning%20Machine&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Lv,%20Qi&rft.date=2016-03-01&rft.volume=13&rft.issue=3&rft.spage=434&rft.epage=438&rft.pages=434-438&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2016.2517178&rft_dat=%3Cproquest_RIE%3E4048052101%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787279960&rft_id=info:pmid/&rft_ieee_id=7403893&rfr_iscdi=true