Robust Stability for Multiple Model Adaptive Control: Part I-The Framework

An axiomatic framework providing robust stability and performance bounds for a wide class of Estimation based Multiple Model Switched Adaptive Control (EMMSAC) algorithms is developed. The approach decouples development of both the atomic control designs and the estimation processes thus permitting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2016-03, Vol.61 (3), p.677-692
Hauptverfasser: Buchstaller, Dominic, French, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 692
container_issue 3
container_start_page 677
container_title IEEE transactions on automatic control
container_volume 61
creator Buchstaller, Dominic
French, Mark
description An axiomatic framework providing robust stability and performance bounds for a wide class of Estimation based Multiple Model Switched Adaptive Control (EMMSAC) algorithms is developed. The approach decouples development of both the atomic control designs and the estimation processes thus permitting the usage of standard controller design and optimization approaches for these components. The framework is shown to give tractable algorithms for MIMO LTI plants, and also for some classes of nonlinear systems (for example, an integrator with input saturation). The gain bounds obtained have the key feature that they are functions of the complexity of the underlying uncertainty as described by metric entropy measures. For certain important geometries, such as a compact parametric uncertainties, the gain bounds are independent of the number of plant models (above a certain threshold) which are utilized in the implementation. Design processes are described for achieving a suitable sampling of the plant uncertainty set to create a finite candidate plant model set (whose size is also determined by a metric entropy measure) which achieves a guaranteed robustness/performance.
doi_str_mv 10.1109/TAC.2015.2492518
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1787273666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7300405</ieee_id><sourcerecordid>4047984821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-534745734d69e3a848f64830a917c1f655c48bd987be91406f494674bd8214bb3</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFb3gpsB16nzfrgrwWqlRdG6HibJBFPTTpyZKP33prS4uhz4zrnwAXCN0QRjpO9W03xCEOYTwjThWJ2AEeZcZYQTegpGCGGVaaLEObiIcT1EwRgegec3X_Qxwfdki6Zt0g7WPsBl36amax1c-sq1cFrZLjU_DuZ-m4Jv7-GrDQnOs9Wng7NgN-7Xh69LcFbbNrqr4x2Dj9nDKn_KFi-P83y6yEqqdco4ZZJxSVkltKNWMVULpiiyGssS14Lzkqmi0koWTmOGRM00E5IVlSKYFQUdg9vDbhf8d-9iMmvfh-3w0mCpJJFUCDFQ6ECVwccYXG260Gxs2BmMzN6YGYyZvTFzNDZUbg6Vxjn3j0uKEEOc_gH4L2Su</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787273666</pqid></control><display><type>article</type><title>Robust Stability for Multiple Model Adaptive Control: Part I-The Framework</title><source>IEEE Electronic Library (IEL)</source><creator>Buchstaller, Dominic ; French, Mark</creator><creatorcontrib>Buchstaller, Dominic ; French, Mark</creatorcontrib><description>An axiomatic framework providing robust stability and performance bounds for a wide class of Estimation based Multiple Model Switched Adaptive Control (EMMSAC) algorithms is developed. The approach decouples development of both the atomic control designs and the estimation processes thus permitting the usage of standard controller design and optimization approaches for these components. The framework is shown to give tractable algorithms for MIMO LTI plants, and also for some classes of nonlinear systems (for example, an integrator with input saturation). The gain bounds obtained have the key feature that they are functions of the complexity of the underlying uncertainty as described by metric entropy measures. For certain important geometries, such as a compact parametric uncertainties, the gain bounds are independent of the number of plant models (above a certain threshold) which are utilized in the implementation. Design processes are described for achieving a suitable sampling of the plant uncertainty set to create a finite candidate plant model set (whose size is also determined by a metric entropy measure) which achieves a guaranteed robustness/performance.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2015.2492518</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Adaptive control ; Algorithm design and analysis ; Algorithms ; Delays ; Entropy ; Robust stability ; Switches ; Uncertainty</subject><ispartof>IEEE transactions on automatic control, 2016-03, Vol.61 (3), p.677-692</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-534745734d69e3a848f64830a917c1f655c48bd987be91406f494674bd8214bb3</citedby><cites>FETCH-LOGICAL-c399t-534745734d69e3a848f64830a917c1f655c48bd987be91406f494674bd8214bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7300405$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7300405$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Buchstaller, Dominic</creatorcontrib><creatorcontrib>French, Mark</creatorcontrib><title>Robust Stability for Multiple Model Adaptive Control: Part I-The Framework</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>An axiomatic framework providing robust stability and performance bounds for a wide class of Estimation based Multiple Model Switched Adaptive Control (EMMSAC) algorithms is developed. The approach decouples development of both the atomic control designs and the estimation processes thus permitting the usage of standard controller design and optimization approaches for these components. The framework is shown to give tractable algorithms for MIMO LTI plants, and also for some classes of nonlinear systems (for example, an integrator with input saturation). The gain bounds obtained have the key feature that they are functions of the complexity of the underlying uncertainty as described by metric entropy measures. For certain important geometries, such as a compact parametric uncertainties, the gain bounds are independent of the number of plant models (above a certain threshold) which are utilized in the implementation. Design processes are described for achieving a suitable sampling of the plant uncertainty set to create a finite candidate plant model set (whose size is also determined by a metric entropy measure) which achieves a guaranteed robustness/performance.</description><subject>Adaptation models</subject><subject>Adaptive control</subject><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Delays</subject><subject>Entropy</subject><subject>Robust stability</subject><subject>Switches</subject><subject>Uncertainty</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLw0AUhQdRsFb3gpsB16nzfrgrwWqlRdG6HibJBFPTTpyZKP33prS4uhz4zrnwAXCN0QRjpO9W03xCEOYTwjThWJ2AEeZcZYQTegpGCGGVaaLEObiIcT1EwRgegec3X_Qxwfdki6Zt0g7WPsBl36amax1c-sq1cFrZLjU_DuZ-m4Jv7-GrDQnOs9Wng7NgN-7Xh69LcFbbNrqr4x2Dj9nDKn_KFi-P83y6yEqqdco4ZZJxSVkltKNWMVULpiiyGssS14Lzkqmi0koWTmOGRM00E5IVlSKYFQUdg9vDbhf8d-9iMmvfh-3w0mCpJJFUCDFQ6ECVwccYXG260Gxs2BmMzN6YGYyZvTFzNDZUbg6Vxjn3j0uKEEOc_gH4L2Su</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Buchstaller, Dominic</creator><creator>French, Mark</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201603</creationdate><title>Robust Stability for Multiple Model Adaptive Control: Part I-The Framework</title><author>Buchstaller, Dominic ; French, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-534745734d69e3a848f64830a917c1f655c48bd987be91406f494674bd8214bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptation models</topic><topic>Adaptive control</topic><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Delays</topic><topic>Entropy</topic><topic>Robust stability</topic><topic>Switches</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buchstaller, Dominic</creatorcontrib><creatorcontrib>French, Mark</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Buchstaller, Dominic</au><au>French, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Stability for Multiple Model Adaptive Control: Part I-The Framework</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2016-03</date><risdate>2016</risdate><volume>61</volume><issue>3</issue><spage>677</spage><epage>692</epage><pages>677-692</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>An axiomatic framework providing robust stability and performance bounds for a wide class of Estimation based Multiple Model Switched Adaptive Control (EMMSAC) algorithms is developed. The approach decouples development of both the atomic control designs and the estimation processes thus permitting the usage of standard controller design and optimization approaches for these components. The framework is shown to give tractable algorithms for MIMO LTI plants, and also for some classes of nonlinear systems (for example, an integrator with input saturation). The gain bounds obtained have the key feature that they are functions of the complexity of the underlying uncertainty as described by metric entropy measures. For certain important geometries, such as a compact parametric uncertainties, the gain bounds are independent of the number of plant models (above a certain threshold) which are utilized in the implementation. Design processes are described for achieving a suitable sampling of the plant uncertainty set to create a finite candidate plant model set (whose size is also determined by a metric entropy measure) which achieves a guaranteed robustness/performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2015.2492518</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2016-03, Vol.61 (3), p.677-692
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_journals_1787273666
source IEEE Electronic Library (IEL)
subjects Adaptation models
Adaptive control
Algorithm design and analysis
Algorithms
Delays
Entropy
Robust stability
Switches
Uncertainty
title Robust Stability for Multiple Model Adaptive Control: Part I-The Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A49%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Stability%20for%20Multiple%20Model%20Adaptive%20Control:%20Part%20I-The%20Framework&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Buchstaller,%20Dominic&rft.date=2016-03&rft.volume=61&rft.issue=3&rft.spage=677&rft.epage=692&rft.pages=677-692&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2015.2492518&rft_dat=%3Cproquest_RIE%3E4047984821%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787273666&rft_id=info:pmid/&rft_ieee_id=7300405&rfr_iscdi=true