Centralized Charging Strategy and Scheduling Algorithm for Electric Vehicles Under a Battery Swapping Scenario

Centralized charging of electric vehicles (EVs) based on battery swapping is a promising strategy for their large-scale utilization in power systems. The most outstanding feature of this strategy is that EV batteries can be replaced within a short time and can be charged during off-peak periods or o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2016-03, Vol.17 (3), p.659-669
Hauptverfasser: Qi Kang, JiaBao Wang, MengChu Zhou, Ammari, Ahmed Chiheb
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 669
container_issue 3
container_start_page 659
container_title IEEE transactions on intelligent transportation systems
container_volume 17
creator Qi Kang
JiaBao Wang
MengChu Zhou
Ammari, Ahmed Chiheb
description Centralized charging of electric vehicles (EVs) based on battery swapping is a promising strategy for their large-scale utilization in power systems. The most outstanding feature of this strategy is that EV batteries can be replaced within a short time and can be charged during off-peak periods or on low electric price and scheduled in any battery swap station. This paper proposes a novel centralized charging strategy of EVs under the battery swapping scenario by considering optimal charging priority and charging location (station or bus node in a power system) based on spot electric price. In this strategy, a population-based heuristic approach is designed to minimize total charging cost, as well as to reduce power loss and voltage deviation of power networks. We introduce a dynamic crossover and adaptive mutation strategy into a hybrid algorithm of particle swarm optimization and genetic algorithm. The resulting algorithm and several others are executed on an IEEE 30-bus test system, and the results suggest that the proposed one is effective and promising for optimal EV centralized charging.
doi_str_mv 10.1109/TITS.2015.2487323
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1787271038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7330009</ieee_id><sourcerecordid>1816059736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-be5c9738cc978bbc5203edf538fe852869b14eec32a15b92b49bb5483f97e2013</originalsourceid><addsrcrecordid>eNpdkT1PwzAQhiMEEqXwAxCLJRaWFH_EiTOWqkAlJIa2rJbjXBpXaVJsR6j8ehxaMbDcnV4996F7o-iW4AkhOH9cLVbLCcWET2giMkbZWTQinIsYY5KeDzVN4hxzfBldObcNasIJGUXtDFpvVWO-oUSzWtmNaTdoGSQPmwNSbYmWuoaybwZ92mw6a3y9Q1Vn0bwB7a3R6ANqoxtwaN2WYJFCT8p7sAe0_FL7_e9ADa2ypruOLirVOLg55XG0fp6vZq_x2_vLYjZ9i3WSYB8XwHWeMaFDFEWhOcUMyoozUYHgVKR5QRIAzagivMhpkeRFwRPBqjyD8AU2jh6Oc_e2--zBebkzTkPTqBa63kkiSIp5WJEG9P4fuu1624brJMlERjOCmQgUOVLads5ZqOTemp2yB0mwHByQgwNycECeHAg9d8ceAwB_fMYYxjhnP8Tkgk8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787271038</pqid></control><display><type>article</type><title>Centralized Charging Strategy and Scheduling Algorithm for Electric Vehicles Under a Battery Swapping Scenario</title><source>IEEE Electronic Library (IEL)</source><creator>Qi Kang ; JiaBao Wang ; MengChu Zhou ; Ammari, Ahmed Chiheb</creator><creatorcontrib>Qi Kang ; JiaBao Wang ; MengChu Zhou ; Ammari, Ahmed Chiheb</creatorcontrib><description>Centralized charging of electric vehicles (EVs) based on battery swapping is a promising strategy for their large-scale utilization in power systems. The most outstanding feature of this strategy is that EV batteries can be replaced within a short time and can be charged during off-peak periods or on low electric price and scheduled in any battery swap station. This paper proposes a novel centralized charging strategy of EVs under the battery swapping scenario by considering optimal charging priority and charging location (station or bus node in a power system) based on spot electric price. In this strategy, a population-based heuristic approach is designed to minimize total charging cost, as well as to reduce power loss and voltage deviation of power networks. We introduce a dynamic crossover and adaptive mutation strategy into a hybrid algorithm of particle swarm optimization and genetic algorithm. The resulting algorithm and several others are executed on an IEEE 30-bus test system, and the results suggest that the proposed one is effective and promising for optimal EV centralized charging.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2015.2487323</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Batteries ; Battery swap ; centralized charging ; Charging ; Dynamics ; Electric batteries ; Electric power systems ; Electric utilities ; electric vehicle ; Electric vehicles ; genetic algorithm ; Genetic algorithms ; Heuristic algorithms ; particle swarm optimization ; Power demand ; Stations ; Strategy ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2016-03, Vol.17 (3), p.659-669</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-be5c9738cc978bbc5203edf538fe852869b14eec32a15b92b49bb5483f97e2013</citedby><cites>FETCH-LOGICAL-c440t-be5c9738cc978bbc5203edf538fe852869b14eec32a15b92b49bb5483f97e2013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7330009$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7330009$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qi Kang</creatorcontrib><creatorcontrib>JiaBao Wang</creatorcontrib><creatorcontrib>MengChu Zhou</creatorcontrib><creatorcontrib>Ammari, Ahmed Chiheb</creatorcontrib><title>Centralized Charging Strategy and Scheduling Algorithm for Electric Vehicles Under a Battery Swapping Scenario</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Centralized charging of electric vehicles (EVs) based on battery swapping is a promising strategy for their large-scale utilization in power systems. The most outstanding feature of this strategy is that EV batteries can be replaced within a short time and can be charged during off-peak periods or on low electric price and scheduled in any battery swap station. This paper proposes a novel centralized charging strategy of EVs under the battery swapping scenario by considering optimal charging priority and charging location (station or bus node in a power system) based on spot electric price. In this strategy, a population-based heuristic approach is designed to minimize total charging cost, as well as to reduce power loss and voltage deviation of power networks. We introduce a dynamic crossover and adaptive mutation strategy into a hybrid algorithm of particle swarm optimization and genetic algorithm. The resulting algorithm and several others are executed on an IEEE 30-bus test system, and the results suggest that the proposed one is effective and promising for optimal EV centralized charging.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Batteries</subject><subject>Battery swap</subject><subject>centralized charging</subject><subject>Charging</subject><subject>Dynamics</subject><subject>Electric batteries</subject><subject>Electric power systems</subject><subject>Electric utilities</subject><subject>electric vehicle</subject><subject>Electric vehicles</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Heuristic algorithms</subject><subject>particle swarm optimization</subject><subject>Power demand</subject><subject>Stations</subject><subject>Strategy</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkT1PwzAQhiMEEqXwAxCLJRaWFH_EiTOWqkAlJIa2rJbjXBpXaVJsR6j8ehxaMbDcnV4996F7o-iW4AkhOH9cLVbLCcWET2giMkbZWTQinIsYY5KeDzVN4hxzfBldObcNasIJGUXtDFpvVWO-oUSzWtmNaTdoGSQPmwNSbYmWuoaybwZ92mw6a3y9Q1Vn0bwB7a3R6ANqoxtwaN2WYJFCT8p7sAe0_FL7_e9ADa2ypruOLirVOLg55XG0fp6vZq_x2_vLYjZ9i3WSYB8XwHWeMaFDFEWhOcUMyoozUYHgVKR5QRIAzagivMhpkeRFwRPBqjyD8AU2jh6Oc_e2--zBebkzTkPTqBa63kkiSIp5WJEG9P4fuu1624brJMlERjOCmQgUOVLads5ZqOTemp2yB0mwHByQgwNycECeHAg9d8ceAwB_fMYYxjhnP8Tkgk8</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Qi Kang</creator><creator>JiaBao Wang</creator><creator>MengChu Zhou</creator><creator>Ammari, Ahmed Chiheb</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20160301</creationdate><title>Centralized Charging Strategy and Scheduling Algorithm for Electric Vehicles Under a Battery Swapping Scenario</title><author>Qi Kang ; JiaBao Wang ; MengChu Zhou ; Ammari, Ahmed Chiheb</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-be5c9738cc978bbc5203edf538fe852869b14eec32a15b92b49bb5483f97e2013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Batteries</topic><topic>Battery swap</topic><topic>centralized charging</topic><topic>Charging</topic><topic>Dynamics</topic><topic>Electric batteries</topic><topic>Electric power systems</topic><topic>Electric utilities</topic><topic>electric vehicle</topic><topic>Electric vehicles</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Heuristic algorithms</topic><topic>particle swarm optimization</topic><topic>Power demand</topic><topic>Stations</topic><topic>Strategy</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi Kang</creatorcontrib><creatorcontrib>JiaBao Wang</creatorcontrib><creatorcontrib>MengChu Zhou</creatorcontrib><creatorcontrib>Ammari, Ahmed Chiheb</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qi Kang</au><au>JiaBao Wang</au><au>MengChu Zhou</au><au>Ammari, Ahmed Chiheb</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Centralized Charging Strategy and Scheduling Algorithm for Electric Vehicles Under a Battery Swapping Scenario</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>17</volume><issue>3</issue><spage>659</spage><epage>669</epage><pages>659-669</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Centralized charging of electric vehicles (EVs) based on battery swapping is a promising strategy for their large-scale utilization in power systems. The most outstanding feature of this strategy is that EV batteries can be replaced within a short time and can be charged during off-peak periods or on low electric price and scheduled in any battery swap station. This paper proposes a novel centralized charging strategy of EVs under the battery swapping scenario by considering optimal charging priority and charging location (station or bus node in a power system) based on spot electric price. In this strategy, a population-based heuristic approach is designed to minimize total charging cost, as well as to reduce power loss and voltage deviation of power networks. We introduce a dynamic crossover and adaptive mutation strategy into a hybrid algorithm of particle swarm optimization and genetic algorithm. The resulting algorithm and several others are executed on an IEEE 30-bus test system, and the results suggest that the proposed one is effective and promising for optimal EV centralized charging.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2015.2487323</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2016-03, Vol.17 (3), p.659-669
issn 1524-9050
1558-0016
language eng
recordid cdi_proquest_journals_1787271038
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Batteries
Battery swap
centralized charging
Charging
Dynamics
Electric batteries
Electric power systems
Electric utilities
electric vehicle
Electric vehicles
genetic algorithm
Genetic algorithms
Heuristic algorithms
particle swarm optimization
Power demand
Stations
Strategy
Vehicles
title Centralized Charging Strategy and Scheduling Algorithm for Electric Vehicles Under a Battery Swapping Scenario
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T01%3A42%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Centralized%20Charging%20Strategy%20and%20Scheduling%20Algorithm%20for%20Electric%20Vehicles%20Under%20a%20Battery%20Swapping%20Scenario&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Qi%20Kang&rft.date=2016-03-01&rft.volume=17&rft.issue=3&rft.spage=659&rft.epage=669&rft.pages=659-669&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2015.2487323&rft_dat=%3Cproquest_RIE%3E1816059736%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787271038&rft_id=info:pmid/&rft_ieee_id=7330009&rfr_iscdi=true