Interactive Scalar Quantization for Distributed Resource Allocation
In many resource allocation problems, a centralized controller needs to award some resource to a user selected from a collection of distributed users with the goal of maximizing the utility the user would receive from the resource. This can be modeled as the controller computing an extremum of the d...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2016-03, Vol.64 (5), p.1243-1256 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1256 |
---|---|
container_issue | 5 |
container_start_page | 1243 |
container_title | IEEE transactions on signal processing |
container_volume | 64 |
creator | Boyle, Bradford D. Jie Ren Walsh, John MacLaren Weber, Steven |
description | In many resource allocation problems, a centralized controller needs to award some resource to a user selected from a collection of distributed users with the goal of maximizing the utility the user would receive from the resource. This can be modeled as the controller computing an extremum of the distributed users' utilities. The overhead rate necessary to enable the controller to reproduce the users' local state can be prohibitively high. An approach to reduce this overhead is interactive communication wherein rate savings are achieved by tolerating an increase in delay. In this paper, we consider the design of a simple achievable scheme based on successive refinements of scalar quantization at each user. The optimal quantization policy is computed via a dynamic program and we demonstrate that tolerating a small increase in delay can yield significant rate savings. We then consider two simpler quantization policies to investigate the scaling properties of the rate-delay tradeoffs. Using a combination of these simpler policies, the performance of the optimal policy can be closely approximated with lower computational costs. |
doi_str_mv | 10.1109/TSP.2015.2483479 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1787228219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7279201</ieee_id><sourcerecordid>1816023958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-ff4f5254c2b654f14273be36d6a59f72d7e1a38893957a326056039e0bcacff43</originalsourceid><addsrcrecordid>eNpdkMtKAzEUQIMoWKt7wc2AGzdT834sS30VCj5awV1I0wRSpjM1yQj69aZWXLi6d3HO5XIAOEdwhBBU14v50whDxEaYSkKFOgADpCiqIRX8sOyQkZpJ8XYMTlJaQ4goVXwAJtM2u2hsDh-umlvTmFg996bN4cvk0LWV72J1E1KOYdlnt6peXOr6aF01bprO_jCn4MibJrmz3zkEr3e3i8lDPXu8n07Gs9piIXLtPfUMM2rxkjPqEcWCLB3hK26Y8gKvhEOGSKmIYsIQzCHjkCgHl9bYIpMhuNrf3cbuvXcp601I1jWNaV3XJ40k4hAXWxb08h-6Ll-35TuNhBQYS4xUoeCesrFLKTqvtzFsTPzUCOpdVV2q6l1V_Vu1KBd7JTjn_nCBhSoY-QZfTXJm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787228219</pqid></control><display><type>article</type><title>Interactive Scalar Quantization for Distributed Resource Allocation</title><source>IEEE Electronic Library (IEL)</source><creator>Boyle, Bradford D. ; Jie Ren ; Walsh, John MacLaren ; Weber, Steven</creator><creatorcontrib>Boyle, Bradford D. ; Jie Ren ; Walsh, John MacLaren ; Weber, Steven</creatorcontrib><description>In many resource allocation problems, a centralized controller needs to award some resource to a user selected from a collection of distributed users with the goal of maximizing the utility the user would receive from the resource. This can be modeled as the controller computing an extremum of the distributed users' utilities. The overhead rate necessary to enable the controller to reproduce the users' local state can be prohibitively high. An approach to reduce this overhead is interactive communication wherein rate savings are achieved by tolerating an increase in delay. In this paper, we consider the design of a simple achievable scheme based on successive refinements of scalar quantization at each user. The optimal quantization policy is computed via a dynamic program and we demonstrate that tolerating a small increase in delay can yield significant rate savings. We then consider two simpler quantization policies to investigate the scaling properties of the rate-delay tradeoffs. Using a combination of these simpler policies, the performance of the optimal policy can be closely approximated with lower computational costs.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2015.2483479</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computational modeling ; Controllers ; Delay ; Delays ; Distortion ; Dynamic programming ; Interactive ; interactive communication ; Optimization ; Policies ; Quantization ; Quantization (signal) ; Rate-distortion ; Resource allocation ; Resource management ; Scalars</subject><ispartof>IEEE transactions on signal processing, 2016-03, Vol.64 (5), p.1243-1256</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c277t-ff4f5254c2b654f14273be36d6a59f72d7e1a38893957a326056039e0bcacff43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7279201$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7279201$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Boyle, Bradford D.</creatorcontrib><creatorcontrib>Jie Ren</creatorcontrib><creatorcontrib>Walsh, John MacLaren</creatorcontrib><creatorcontrib>Weber, Steven</creatorcontrib><title>Interactive Scalar Quantization for Distributed Resource Allocation</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In many resource allocation problems, a centralized controller needs to award some resource to a user selected from a collection of distributed users with the goal of maximizing the utility the user would receive from the resource. This can be modeled as the controller computing an extremum of the distributed users' utilities. The overhead rate necessary to enable the controller to reproduce the users' local state can be prohibitively high. An approach to reduce this overhead is interactive communication wherein rate savings are achieved by tolerating an increase in delay. In this paper, we consider the design of a simple achievable scheme based on successive refinements of scalar quantization at each user. The optimal quantization policy is computed via a dynamic program and we demonstrate that tolerating a small increase in delay can yield significant rate savings. We then consider two simpler quantization policies to investigate the scaling properties of the rate-delay tradeoffs. Using a combination of these simpler policies, the performance of the optimal policy can be closely approximated with lower computational costs.</description><subject>Computational modeling</subject><subject>Controllers</subject><subject>Delay</subject><subject>Delays</subject><subject>Distortion</subject><subject>Dynamic programming</subject><subject>Interactive</subject><subject>interactive communication</subject><subject>Optimization</subject><subject>Policies</subject><subject>Quantization</subject><subject>Quantization (signal)</subject><subject>Rate-distortion</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Scalars</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtKAzEUQIMoWKt7wc2AGzdT834sS30VCj5awV1I0wRSpjM1yQj69aZWXLi6d3HO5XIAOEdwhBBU14v50whDxEaYSkKFOgADpCiqIRX8sOyQkZpJ8XYMTlJaQ4goVXwAJtM2u2hsDh-umlvTmFg996bN4cvk0LWV72J1E1KOYdlnt6peXOr6aF01bprO_jCn4MibJrmz3zkEr3e3i8lDPXu8n07Gs9piIXLtPfUMM2rxkjPqEcWCLB3hK26Y8gKvhEOGSKmIYsIQzCHjkCgHl9bYIpMhuNrf3cbuvXcp601I1jWNaV3XJ40k4hAXWxb08h-6Ll-35TuNhBQYS4xUoeCesrFLKTqvtzFsTPzUCOpdVV2q6l1V_Vu1KBd7JTjn_nCBhSoY-QZfTXJm</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Boyle, Bradford D.</creator><creator>Jie Ren</creator><creator>Walsh, John MacLaren</creator><creator>Weber, Steven</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20160301</creationdate><title>Interactive Scalar Quantization for Distributed Resource Allocation</title><author>Boyle, Bradford D. ; Jie Ren ; Walsh, John MacLaren ; Weber, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-ff4f5254c2b654f14273be36d6a59f72d7e1a38893957a326056039e0bcacff43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computational modeling</topic><topic>Controllers</topic><topic>Delay</topic><topic>Delays</topic><topic>Distortion</topic><topic>Dynamic programming</topic><topic>Interactive</topic><topic>interactive communication</topic><topic>Optimization</topic><topic>Policies</topic><topic>Quantization</topic><topic>Quantization (signal)</topic><topic>Rate-distortion</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Scalars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boyle, Bradford D.</creatorcontrib><creatorcontrib>Jie Ren</creatorcontrib><creatorcontrib>Walsh, John MacLaren</creatorcontrib><creatorcontrib>Weber, Steven</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Boyle, Bradford D.</au><au>Jie Ren</au><au>Walsh, John MacLaren</au><au>Weber, Steven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactive Scalar Quantization for Distributed Resource Allocation</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>64</volume><issue>5</issue><spage>1243</spage><epage>1256</epage><pages>1243-1256</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In many resource allocation problems, a centralized controller needs to award some resource to a user selected from a collection of distributed users with the goal of maximizing the utility the user would receive from the resource. This can be modeled as the controller computing an extremum of the distributed users' utilities. The overhead rate necessary to enable the controller to reproduce the users' local state can be prohibitively high. An approach to reduce this overhead is interactive communication wherein rate savings are achieved by tolerating an increase in delay. In this paper, we consider the design of a simple achievable scheme based on successive refinements of scalar quantization at each user. The optimal quantization policy is computed via a dynamic program and we demonstrate that tolerating a small increase in delay can yield significant rate savings. We then consider two simpler quantization policies to investigate the scaling properties of the rate-delay tradeoffs. Using a combination of these simpler policies, the performance of the optimal policy can be closely approximated with lower computational costs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2015.2483479</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2016-03, Vol.64 (5), p.1243-1256 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_journals_1787228219 |
source | IEEE Electronic Library (IEL) |
subjects | Computational modeling Controllers Delay Delays Distortion Dynamic programming Interactive interactive communication Optimization Policies Quantization Quantization (signal) Rate-distortion Resource allocation Resource management Scalars |
title | Interactive Scalar Quantization for Distributed Resource Allocation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A14%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactive%20Scalar%20Quantization%20for%20Distributed%20Resource%20Allocation&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Boyle,%20Bradford%20D.&rft.date=2016-03-01&rft.volume=64&rft.issue=5&rft.spage=1243&rft.epage=1256&rft.pages=1243-1256&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2015.2483479&rft_dat=%3Cproquest_RIE%3E1816023958%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787228219&rft_id=info:pmid/&rft_ieee_id=7279201&rfr_iscdi=true |