Interactive Scalar Quantization for Distributed Resource Allocation

In many resource allocation problems, a centralized controller needs to award some resource to a user selected from a collection of distributed users with the goal of maximizing the utility the user would receive from the resource. This can be modeled as the controller computing an extremum of the d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2016-03, Vol.64 (5), p.1243-1256
Hauptverfasser: Boyle, Bradford D., Jie Ren, Walsh, John MacLaren, Weber, Steven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1256
container_issue 5
container_start_page 1243
container_title IEEE transactions on signal processing
container_volume 64
creator Boyle, Bradford D.
Jie Ren
Walsh, John MacLaren
Weber, Steven
description In many resource allocation problems, a centralized controller needs to award some resource to a user selected from a collection of distributed users with the goal of maximizing the utility the user would receive from the resource. This can be modeled as the controller computing an extremum of the distributed users' utilities. The overhead rate necessary to enable the controller to reproduce the users' local state can be prohibitively high. An approach to reduce this overhead is interactive communication wherein rate savings are achieved by tolerating an increase in delay. In this paper, we consider the design of a simple achievable scheme based on successive refinements of scalar quantization at each user. The optimal quantization policy is computed via a dynamic program and we demonstrate that tolerating a small increase in delay can yield significant rate savings. We then consider two simpler quantization policies to investigate the scaling properties of the rate-delay tradeoffs. Using a combination of these simpler policies, the performance of the optimal policy can be closely approximated with lower computational costs.
doi_str_mv 10.1109/TSP.2015.2483479
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1787228219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7279201</ieee_id><sourcerecordid>1816023958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-ff4f5254c2b654f14273be36d6a59f72d7e1a38893957a326056039e0bcacff43</originalsourceid><addsrcrecordid>eNpdkMtKAzEUQIMoWKt7wc2AGzdT834sS30VCj5awV1I0wRSpjM1yQj69aZWXLi6d3HO5XIAOEdwhBBU14v50whDxEaYSkKFOgADpCiqIRX8sOyQkZpJ8XYMTlJaQ4goVXwAJtM2u2hsDh-umlvTmFg996bN4cvk0LWV72J1E1KOYdlnt6peXOr6aF01bprO_jCn4MibJrmz3zkEr3e3i8lDPXu8n07Gs9piIXLtPfUMM2rxkjPqEcWCLB3hK26Y8gKvhEOGSKmIYsIQzCHjkCgHl9bYIpMhuNrf3cbuvXcp601I1jWNaV3XJ40k4hAXWxb08h-6Ll-35TuNhBQYS4xUoeCesrFLKTqvtzFsTPzUCOpdVV2q6l1V_Vu1KBd7JTjn_nCBhSoY-QZfTXJm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787228219</pqid></control><display><type>article</type><title>Interactive Scalar Quantization for Distributed Resource Allocation</title><source>IEEE Electronic Library (IEL)</source><creator>Boyle, Bradford D. ; Jie Ren ; Walsh, John MacLaren ; Weber, Steven</creator><creatorcontrib>Boyle, Bradford D. ; Jie Ren ; Walsh, John MacLaren ; Weber, Steven</creatorcontrib><description>In many resource allocation problems, a centralized controller needs to award some resource to a user selected from a collection of distributed users with the goal of maximizing the utility the user would receive from the resource. This can be modeled as the controller computing an extremum of the distributed users' utilities. The overhead rate necessary to enable the controller to reproduce the users' local state can be prohibitively high. An approach to reduce this overhead is interactive communication wherein rate savings are achieved by tolerating an increase in delay. In this paper, we consider the design of a simple achievable scheme based on successive refinements of scalar quantization at each user. The optimal quantization policy is computed via a dynamic program and we demonstrate that tolerating a small increase in delay can yield significant rate savings. We then consider two simpler quantization policies to investigate the scaling properties of the rate-delay tradeoffs. Using a combination of these simpler policies, the performance of the optimal policy can be closely approximated with lower computational costs.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2015.2483479</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computational modeling ; Controllers ; Delay ; Delays ; Distortion ; Dynamic programming ; Interactive ; interactive communication ; Optimization ; Policies ; Quantization ; Quantization (signal) ; Rate-distortion ; Resource allocation ; Resource management ; Scalars</subject><ispartof>IEEE transactions on signal processing, 2016-03, Vol.64 (5), p.1243-1256</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c277t-ff4f5254c2b654f14273be36d6a59f72d7e1a38893957a326056039e0bcacff43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7279201$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7279201$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Boyle, Bradford D.</creatorcontrib><creatorcontrib>Jie Ren</creatorcontrib><creatorcontrib>Walsh, John MacLaren</creatorcontrib><creatorcontrib>Weber, Steven</creatorcontrib><title>Interactive Scalar Quantization for Distributed Resource Allocation</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In many resource allocation problems, a centralized controller needs to award some resource to a user selected from a collection of distributed users with the goal of maximizing the utility the user would receive from the resource. This can be modeled as the controller computing an extremum of the distributed users' utilities. The overhead rate necessary to enable the controller to reproduce the users' local state can be prohibitively high. An approach to reduce this overhead is interactive communication wherein rate savings are achieved by tolerating an increase in delay. In this paper, we consider the design of a simple achievable scheme based on successive refinements of scalar quantization at each user. The optimal quantization policy is computed via a dynamic program and we demonstrate that tolerating a small increase in delay can yield significant rate savings. We then consider two simpler quantization policies to investigate the scaling properties of the rate-delay tradeoffs. Using a combination of these simpler policies, the performance of the optimal policy can be closely approximated with lower computational costs.</description><subject>Computational modeling</subject><subject>Controllers</subject><subject>Delay</subject><subject>Delays</subject><subject>Distortion</subject><subject>Dynamic programming</subject><subject>Interactive</subject><subject>interactive communication</subject><subject>Optimization</subject><subject>Policies</subject><subject>Quantization</subject><subject>Quantization (signal)</subject><subject>Rate-distortion</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Scalars</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtKAzEUQIMoWKt7wc2AGzdT834sS30VCj5awV1I0wRSpjM1yQj69aZWXLi6d3HO5XIAOEdwhBBU14v50whDxEaYSkKFOgADpCiqIRX8sOyQkZpJ8XYMTlJaQ4goVXwAJtM2u2hsDh-umlvTmFg996bN4cvk0LWV72J1E1KOYdlnt6peXOr6aF01bprO_jCn4MibJrmz3zkEr3e3i8lDPXu8n07Gs9piIXLtPfUMM2rxkjPqEcWCLB3hK26Y8gKvhEOGSKmIYsIQzCHjkCgHl9bYIpMhuNrf3cbuvXcp601I1jWNaV3XJ40k4hAXWxb08h-6Ll-35TuNhBQYS4xUoeCesrFLKTqvtzFsTPzUCOpdVV2q6l1V_Vu1KBd7JTjn_nCBhSoY-QZfTXJm</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Boyle, Bradford D.</creator><creator>Jie Ren</creator><creator>Walsh, John MacLaren</creator><creator>Weber, Steven</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20160301</creationdate><title>Interactive Scalar Quantization for Distributed Resource Allocation</title><author>Boyle, Bradford D. ; Jie Ren ; Walsh, John MacLaren ; Weber, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-ff4f5254c2b654f14273be36d6a59f72d7e1a38893957a326056039e0bcacff43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computational modeling</topic><topic>Controllers</topic><topic>Delay</topic><topic>Delays</topic><topic>Distortion</topic><topic>Dynamic programming</topic><topic>Interactive</topic><topic>interactive communication</topic><topic>Optimization</topic><topic>Policies</topic><topic>Quantization</topic><topic>Quantization (signal)</topic><topic>Rate-distortion</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Scalars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boyle, Bradford D.</creatorcontrib><creatorcontrib>Jie Ren</creatorcontrib><creatorcontrib>Walsh, John MacLaren</creatorcontrib><creatorcontrib>Weber, Steven</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Boyle, Bradford D.</au><au>Jie Ren</au><au>Walsh, John MacLaren</au><au>Weber, Steven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactive Scalar Quantization for Distributed Resource Allocation</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>64</volume><issue>5</issue><spage>1243</spage><epage>1256</epage><pages>1243-1256</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In many resource allocation problems, a centralized controller needs to award some resource to a user selected from a collection of distributed users with the goal of maximizing the utility the user would receive from the resource. This can be modeled as the controller computing an extremum of the distributed users' utilities. The overhead rate necessary to enable the controller to reproduce the users' local state can be prohibitively high. An approach to reduce this overhead is interactive communication wherein rate savings are achieved by tolerating an increase in delay. In this paper, we consider the design of a simple achievable scheme based on successive refinements of scalar quantization at each user. The optimal quantization policy is computed via a dynamic program and we demonstrate that tolerating a small increase in delay can yield significant rate savings. We then consider two simpler quantization policies to investigate the scaling properties of the rate-delay tradeoffs. Using a combination of these simpler policies, the performance of the optimal policy can be closely approximated with lower computational costs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2015.2483479</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2016-03, Vol.64 (5), p.1243-1256
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_journals_1787228219
source IEEE Electronic Library (IEL)
subjects Computational modeling
Controllers
Delay
Delays
Distortion
Dynamic programming
Interactive
interactive communication
Optimization
Policies
Quantization
Quantization (signal)
Rate-distortion
Resource allocation
Resource management
Scalars
title Interactive Scalar Quantization for Distributed Resource Allocation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A14%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactive%20Scalar%20Quantization%20for%20Distributed%20Resource%20Allocation&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Boyle,%20Bradford%20D.&rft.date=2016-03-01&rft.volume=64&rft.issue=5&rft.spage=1243&rft.epage=1256&rft.pages=1243-1256&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2015.2483479&rft_dat=%3Cproquest_RIE%3E1816023958%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787228219&rft_id=info:pmid/&rft_ieee_id=7279201&rfr_iscdi=true